
Using Lemmatization Technique for
Automatic Diacritics Restoration

Jakub Kanis, Luděk Müller

University of West Bohemia, Department of Cybernetics,
Univerzitnı́ 8, 306 14 Plzeň, Czech Republic

jkanis,muller@kky.zcu.cz

Abstract
This paper is devoted to automatic construction of a lem-

matizer from a Full Form - Lemma (FFL) training dictionary,
and to lemmatization of new, in the FFL dictionary unseen - i.e.
out-of-vocabulary (OOV), words. Three methods of lemmatiza-
tion of three kinds of OOV words (missing full forms, unknown
words, and compound words) are introduced. In addition, the
application of lemmatizer automatic construction to the prob-
lem of automatic diacritics restoration is described.

1. Introduction
In contrast to English, almost every language with Latin alpha-
bet uses some additional special characters. Those characters
are called accented characters and are created from standard
characters using diacritics. For example in Czech language
there are fifteen (in lower case) accented characters (á, č, ď, é,
ě, ı́, ň, ó, ř, š, ť, ú, ů, ý, ž) and three diacritics (´, ˇ, ˚ ). On the
other hand there are only three accented characters (ä, ö, ü) and
one diacritic (¨) in German.

The problem arises when diacritics are missing and we need
to restore them - for example for speech synthesis of email mes-
sages written without diacritics. The missing diacritics are typ-
ical for email and SMS (Smart Message Service) communica-
tion. For example if one write an SMS message on the cellular
phone then it is needed two characters for one accented char-
acter and the SMS message is then bigger than the message
with unaccented characters. This phenomenon is undesirable
because a standard SMS message has a limited size. The second
problem is that the unaccented characters can be typed quicker
than accented ones. Thus writing with unaccented characters is
faster and people usually do not use diacritics.

The basic method for diacritics restoration uses a dictionary
of unaccented word forms and corresponding accented forms.
The problem is that for some unaccented forms exists more than
one accented form. There are methods for selection of one ac-
cented form. The basic method is to select the form with the
highest frequency of occurrence. The better method uses POS
tagging for resolution of ambiguous accented forms [1]. The
best method is based on usage of decision lists for homograph
disambiguation [2].

In this paper we want to show that the lemmatizer with
lemmatization patterns based on automatic induction of lemma-
tization rules from Full form - Lemma (FFL) dictionary can
be used for diacritics restoration. The usage of lemmatizer has
ability of processing out-of-vocabulary (OOV) words (see sec-
tion 2.4) in contrast to the usage of the dictionary only.

In the next section we describe the lemmatizer construction
from the FFL dictionary and the method used for OOV words

lemmatization. The description of lemmatization and diacrit-
ics restoration experiments and its results are given in the third
section. The last section summarizes this paper.

2. Construction of Lemmatizer
2.1. Lemmatizer

There are two main processes used for derivation of new words
in a language: the inflectional and the derivative process. The
words are derived from the same morphological class (for ex-
ample the form CLEARED and CLEARS of the verb CLEAR)
in the inflectional process while in the derivative process are de-
rived from other morphological classes (CLEARLY). The cre-
ation of a new word can be reached by applying a set of deriva-
tion rules in the both processes. The rules provide adding or
stripping prefixes (prefix rule) and suffixes (suffix rule) to derive
a new word form. From this point of view, the lemmatization
can be regarded as the inverse operation to the inflectional and
derivative processes. Thus, we can obtain lemmatization rules
via the inversion of the given derivation rules [3]. Alternatively,
we can induce them simply from the FFL dictionary (see Sec-
tion 2.2). The lemmatization rules induction is advantageous
when derivation rules are given because the inducted rules and
a lexicon of lemmas are error free contrary to the manually cre-
ated ones which can contain some errors. The usual error is a
mismatch between a derivation rule condition and the string that
had to be stripped.

The set of derivation rules is a set of if-then rules (for exam-
ple, a simple derivation rule is: if a word ends with E, then strip
E and add ION , i.e. in the symbolic form: E > −E, ION ).
The set of rules should cover all morphology events of the given
language. The completeness of the lexicon strongly influences
the successfulness of the lemmatization because a proper ba-
sic form (lemma) can be found only if it is included in the
lexicon [3]. Unfortunately, there are a lot of OOV words in
real natural language processing applications which should be
also lemmatized. In addition, if the FFL dictionary is used for
the lemmatization rules induction, there still can be some full
forms of a word in the test corpora which are not in the dic-
tionary. Therefore, in next sections we describe two different
methods for lemmatization of full forms which are missing in
the FFL dictionary, and present a method for lemmatization of
additional OOV words.

2.2. Induction of Lemmatization Rules from FFL Training
Dictionary

The FFL dictionary consists of pairs: [full word form, lemma].
The induction of lemmatization rules is based on searching for



the longest common substring of the full form and the lemma.
We are looking for lemmatization rules in the form if-then rules
described in the previous section. The algorithm of searching
the longest common substring is based on dynamic program-
ming. The detailed description of the algorithm is given in [4].

The form of the derived lemmatization rules depends on a
position of the longest common substring in the full form and
the lemma. The longest common substring can be at the be-
ginning, in the middle, or at the end of the full form and the
lemma. For example, if we have a pair of strings BAC and
ADE, where A, B, C, D, and E are their substrings (each
substring is a sequence of characters, e.g. A = a1....an), then
we can derive two lemmatization rules, which transform the full
form BAC into the lemma ADE. The first one is the prefix rule
B > −B and the second one is the suffix rule C > −C, DE.
The substring B before and the substring C after the longest
common substring A represents the condition of the prefix and
the suffix rule, respectively.

We suppose that no more than two rules are applied to the
lemma during the derivation process: the suffix and/or the prefix
rule. To illustrate all possible forms of lemmatization rules, we
show a table (Table 1) of pairs: [full word form, lemma] for all
combinations of positions of the longest common substring A

in the pair of strings and the lemmatization rules derived from
them.

Table 1: All possible forms of lemmatization rules used in the
inductive process.

. > DE

. > D

Alternative Rules

. > E

. > DE

BC > -BC, DEDEABCA

an > EBC > -BC, DDAEBCA

an > DEBC > -BCADEBCA

C > -CB > -D, DEDEABAC

C > -C, EB > -B, DDAEBAC

C > -C, DEB > -BADEBAC

BC > -BCA > DEDEAABC

BC > -BC, EA > DDAEABC

BC > -BC, DEADEABC

Suffix RulePrefix RuleLemmaFull Form

. > DE

. > D

Alternative Rules

. > E

. > DE

BC > -BC, DEDEABCA

an > EBC > -BC, DDAEBCA

an > DEBC > -BCADEBCA

C > -CB > -D, DEDEABAC

C > -C, EB > -B, DDAEBAC

C > -C, DEB > -BADEBAC

BC > -BCA > DEDEAABC

BC > -BC, EA > DDAEABC

BC > -BC, DEADEABC

Suffix RulePrefix RuleLemmaFull Form

There are general lemmatization rule forms in the third and
the fourth column, which we use in the inductive process of
lemmatization rules. In the second, third, seventh and eighth
rows there are also alternative rules in the last two columns (the
dot in the rule means an arbitrary string). These alternative rules
were derived in the same way as the rules in the example above
(BAC and ADE). Because there are no substrings before (row
2 and 3) or after (row 7 and 8) the common substring A, the de-
rived lemmatization rules are stripped-only rules (see [3]) and
therefore, they have to be replaced by other no stripped-only
rules. The condition of a new prefix rule is the whole common
substring A and the condition of a new suffix rule is the last
character an of substring A. If there is no common substring
then a rule which substitutes the full form for its lemma is cre-
ated. For example, the pair of words JE and ON creates the
rule: JE > −JE, ON . The absence of common substring
is caused by the presence of irregular words in the language,
i.e. words with the irregular inflectional and derivative process.
Every induced rule has its identification code (rule id or rule
index). Every lemma together with a set of ids of lemmatization
rules which has been induced from this lemma (called ”lemma

applicable rules”), i.e. a sort list of the rule ids, is stored in the
lemma lexicon [3].

2.3. Lemmatization of Missing Full Forms

When we want to construct the lemmatizer from the FFL dictio-
nary, we have to cope with the following problem. The problem
is the absence of some full forms in the FFL dictionary, espe-
cially if we have the FFL dictionary which has not been created
by the morphological generator.

2.3.1. Generalization of Lemma Lexicon (GLL)

This method works with the lemma lexicon, which has been
build in the inductive process of lemmatization rules. A lemma
lexicon entry is a lemma with its ”lemma applicable rules”.
Suppose that for some lemma and its relevant full forms the
lemma lexicon contains only the information on rules which
are used during the lemmatization of these full forms. This in-
formation is checked in the lemmatization process and thus the
situation that the relevant full form is missing causes that this
missing full form cannot be lemmatized. To provide the lemma-
tization of the missing relevant full forms, we need to add the
ids of rules which lemmatize these missing forms to the lexicon.
This problem can be viewed as a problem of automatic finding
”lemma applicable rules” patterns or as lemma clustering based
on the ”lemma applicable rules”. We assume that there are some
lemmas with their all relevant full forms in the FFL dictionary
which can be served as the patterns. Once we have the patterns,
we assign them to the lemmas in the lexicon and create a new
lemma lexicon consequently.

To find the patterns, we create a co-occurrence matrix A of
dimension n x n, where n is the number of lemmatization rules.
The rule ids denote row and column indexes of A; the matrix
element aij comprises the information on how many times the
rule i together with the rule j has been seen in the list of the rule
ids. Now we go trough all the lemmas in the lexicon and count
how many times the rule i together with the rule j has occurred
in the lemma list of the rule ids. The rows in the matrix are
treated as searched patterns, i.e. if we see the rule i in a lemma
list we enrich this list by adding the indexes of all columns (the
rules) whose elements of the i-th row are positive. This enrich-
ment brings a higher recall but a lower precision. A better way
is to enrich the list by the column indexes which score is higher
than some threshold. We used the threshold equal to one and
obtained increasing in the recall by 2.58% but decreasing in the
precision by 5.6% for our development data (for more detail see
Table 2 in Section 3). Because this method decreases the preci-
sion we develop another method: Hierarchical Lemmatization
without Rule Permission Check.

2.3.2. Hierarchical Lemmatization without Rule Permission
Check (HLWRPC)

The first problem of the previous method is that the enriched
lexicon is used on all lemmatized words. The second one is
that finding the right patterns which do not drop the precision
is a very difficult task. We should make some changes in the
lemmatization process to cope with these two problems. First,
we try to use the lemmatization algorithm described into [3] on
the investigated word. If it finds some lemma then this lemma
is considered as the result otherwise the investigated word is
the missing full form. In this case, we use a new lemmatiza-
tion algorithm without the rule permission check, i.e. if we find
some lemma in the lemma lexicon then we do not check if the



lemmatization rules used during this lemmatization process are
”lemma applicable rules”. In this way, the lemma lexicon is
totally generalized without the negative influences on a preci-
sion and a recall. This method increases the recall by 2.7% and
the precision by 0.1% for development data (details are given in
Table 2 in Section 3).

2.4. Lemmatization of OOV Words

The OOV words are words which are not in the FFL dictio-
nary and therefore, we cannot lemmatize them by the lemmati-
zation algorithm [3]. There are three types of the OOV words.
The first type is the situation when the full form is missing in
the FFL dictionary but its lemma is in the FFL dictionary. The
lemmatization of the missing full forms has been described in
the previous section. The second type is a word whose neither
full form nor lemma is in the lexicon. This word is called an un-
known word. The last type is a compound word whose partial
word has its lemma in the lexicon. For lemmatization of com-
pound words we use the same lemmatization algorithm (with-
out rule permission check) as the one for the missing full forms.
The difference is that we do not lemmatize the compound word
directly. First, we remove some characters from the beginning
of the compound word and subsequently the rest is lemmatized
by the lemmatization algorithm without rule permission check.
The question is: What is the minimal length of the rest which
still can represent some full form? We provide several exper-
iments and chose the length of six characters as the minimal
length of the rest.

To every word a set of ”word applicable rules” (rules which
condition is true for the given word) can be found. One set
can be assigned to several different words and hence it can be
considered as a lemmatization pattern. In order to create the
lemmatization patterns we go trough a whole FFL dictionary
and for every pair [full form, lemma] we find ”word applicable
rules” (the lemmatization pattern). This lemmatization pattern
together with the ids of winning rules and a count of winnings
of every winning rule is saved to the pattern table. The winning
rule is every rule which converts the full form to the lemma (if
the full form is the same as the lemma then the winning rule
is the empty rule but it is taken into account too). If the pat-
tern already exists then we increase the score of the winning
rules only. The winning rules are sorted by their count of win-
nings. We use two pattern tables - the prefix pattern table (word
applicable prefix rules only) and the suffix pattern table (word
applicable suffix rules only) separately. When we lemmatize
the unknown word, we try to apply all the lemmatization rules,
and the applicable rules then create prefix and suffix pattern.
Then we find these patterns in the relevant table and apply the
winning rules which have the highest count of winnings on the
unknown word.

3. Experiments and Results
The data source used for the experiments was the Prague De-
pendency Treebank (PDT 1.0). The PDT 1.0 is a corpus of
annotated Czech texts having three-level structure [5]: morpho-
logical, analytical, and tectogrammatical. For the construction
and evaluation of the lemmatizer we have used only training,
development, and test data from the morphological level. From
the PDT 1.0 training data we extracted a set of pairs of full word
form and lemma which represents the training FFL dictionary
(PDT 1.0 FFL dictionary) for our experiments.

The lemmatizer output should be all lemmas from which

the lemmatized word can be derived. This is a multiple output
thus we have to count a recall (R) and a precision (P). The recall
is computed as a ratio of number of the right lemmatized words
to the number of all lemmatized words. The word is lemmatized
correctly when there is its reference lemma in the lemmatizer
output. The reference lemma is the unambiguous lemma which
is assigned to the given word by a human expert. The precision
is computed as the ratio of the number of the right lemmatized
words to the number of all lemmas generated by the lemmatizer
for all correct lemmatized words.

The methods for the lemmatization of missing full forms,
unknown, and compound words have been tested on the devel-
opment and test morphological data from the PDT 1.0. The
results are given in Table 2.

Table 2: The results of the methods for the lemmatization of
OOV words.

99.31

98.6

95.82

97.8

97.64

95.06

R [%]

Morphological development

data

74.59

76.14

76.1

76.53

70.8

76.42

P [%]

726

1481

4411

2356

2492

5212

# of

errors

712

X

X

X

X

4736

# of

errors

75.1

X

X

X

X

76.74

P [%]

99.3

X

X

X

X

95.41

R [%]

Morphological test data

Lem_FFL

_Hierar_C

md_Unk

Lem_FFL

_Unknow

n

Lem_FFL

_Compou

nd

Lem_FFL

_Hierar

Lem_FFL

_Gen_Dic

Lem_FFL

Method

99.31

98.6

95.82

97.8

97.64

95.06

R [%]

Morphological development

data

74.59

76.14

76.1

76.53

70.8

76.42

P [%]

726

1481

4411

2356

2492

5212

# of

errors

712

X

X

X

X

4736

# of

errors

75.1

X

X

X

X

76.74

P [%]

99.3

X

X

X

X

95.41

R [%]

Morphological test data

Lem_FFL

_Hierar_C

md_Unk

Lem_FFL

_Unknow

n

Lem_FFL

_Compou

nd

Lem_FFL

_Hierar

Lem_FFL

_Gen_Dic

Lem_FFL

Method

In the first row the result for lemmatizer (Lem FFL)
trained on the PDT 1.0 FFL dictionary is given. In the
next rows the results of the methods for the lemmatization
missing full forms (GLL – Lem FFL Gen Dic; HLWRPC –
Lem FFL Hierar), compound (Lem FFL Compound), and un-
known (Lem FFL Unknown) words used with Lem FFL lem-
matizer are shown. The best result, which has been achieved by
a combination of the methods, is in the last row.

For the diacritics restoration experiments we use the FFL
dictionary which consists of pairs: [unaccented word form, ac-
cented word form]. This dictionary was extracted from mor-
phological training data of PDT 1.0 but it can be extract from
arbitrary raw accented texts because no additional annotation
is needed (what is needed for annotation is diacritics removal).
The results are given in Table 3.

In the first and the second row are the results for devel-
opment data. In the rest of rows are the results for OOV words
from development data only. The baseline for development data
restoration is in the first row (Development 1 - usage of lemma-
tizer without methods for lemmatization of OOV words). In
the third row is the baseline for OOV words restoration (OOV
Words 1 - no diacritics restoration - a word is leaved in the same
form). In the fourth row (OOV Words 2) is the result for the
restoration of OOV words where we use all methods for OOV
words lemmatization (missing full forms, compound words and



Table 3: The results of the diacritics restoration.

509310033.36OOV Words 1

522176.8895.05Development 1

253859.9866.79OOV Words 2

329510056.88OOV Words 3

# of

errors
P [%]R [%]Data

97.47 75.40 2666Development 2

509310033.36OOV Words 1

522176.8895.05Development 1

253859.9866.79OOV Words 2

329510056.88OOV Words 3

# of

errors
P [%]R [%]Data

97.47 75.40 2666Development 2

unknown words) thus there are more possible results (P = 59.98
%). In the last row is then the result for the method where we
choose only one possible result (P = 100 %).

4. Conclusions
We have introduced a method for the automatic construction
of the lemmatizer with lemmatization patterns from the FFL
dictionary and methods for lemmatization of OOV words. The
methods have been evaluated on development data. The best
result achieved on the test data had recall 99.3 % and precision
75.1 % (Table 2). In the next experiment we have shown that
this method for automatic construction of lemmatizer can be
used for the automatic diacritics restoration, especially in case
of OOV words diacritics restoration. The results for diacritics
restoration: recall 97.47 % and precision 75.4 %, are similar
to ones for lemmatization of words. The main advantage of
this method is diacritics restoration for OOV words. The results
for OOV words diacritics restoration were: recall 66.79 % and
precision 59.98 %. The precision, which is smaller than 100 %,
means that there are more possible results. If we choose one
result only then the recall drops to 56.88 % (Table 3).

The method for diacritics restoration based on automatic
construction of the lemmatizer with lemmatization patterns
from the FFL dictionary is language independent and can be
simply adapted to another language or domain. For the adapta-
tion we need the new FFL dictionary only. This dictionary can
be prepared from arbitrary accented text easily. The preparation
consists in diacritics removal.

5. Acknowledgment
This work was supported by the Ministry of Education of the
Czech Republic under project MŠMT LC536.

6. References
[1] Tufiş, D., and Chiţu, A. Automatic diacritics insertion in

Romanian texts. In Proceedings of the International Con-
ference on Computational Lexicography COMPLEX ’99
(Pecs, Hungary, June 1999)

[2] Yarowsky, D., Decision lists for lexical ambiguity reso-
lution: Application to accent restoration in Spanish and
French. In Proceedings of the 32nd Annual Meeting of the
Association for Computational Linguistics, pp. 88–95 Las
Cruces 1994

[3] Kanis J., Müller L., Using the lemmatization technique for
phonetic transcription in text-to-speech system, In Text,
speech and dialogue. Berlin: Springer, (2004). s. 355-
361.ISBN 3-540-23049-1.

[4] Daniel Hirschberg’s page:
http://www.ics.uci.edu/ dan/class/161/notes/6/
Dynamic.html

[5] Böhmová, A., Hajič, J., Hajičová, E., Hladká, B.: The
Prague Dependency Treebank: Three-Level annotation sce-
nario. -In: A. Abeill, editor, Treebanks: Building and using
syntactically annotated corpora. Kluwer Academic Pub-
lishers (2001).


