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Abstract 
This paper presents results of training of coarticulation models 
for Czech audio-visual speech synthesis. Two approaches for 
solution of coarticulation in audio-visual speech synthesis were 
used, coarticulation based on dominance functions and visual 
unit selection. For both approaches, coarticulation models were 
trained. Models for unit selection approach were trained by 
visualy clustered data. These data were obtained using decision 
tree algorithm. Outputs of audio-visual speech synthesis for 
both approaches were assessed and compared objectively. 
Index Terms: audio-visual speech synthesis, talking head, 
coarticulation model 

1. Introduction 
In concatenation-based speech synthesis, basic speech units are 
concatenated to produce speech output. To obtain natural and 
intelligible speech, coarticulation effect has to be taken into 
account. Basic speech units are influenced by previously uttered 
speech units (backward coarticulation) and by speech units to be 
uttered after (forward coarticulation). If not properly handled, 
subsequent speech units do not fit to each other which produces 
unnatural effects at the basic speech unit boundaries.  

This is true also (or even more) for audio-visual speech 
synthesis (parametrical talking head). Actually pronounced unit 
is visually presented as certain shape of lips and other 
articulatory organs. This shape can be obtained by analysis of 
real person articulation, parameterized and stored for future use 
in synthesis. The visual parameterization corresponds to the 
speech unit uttered, but is influenced by neighbouring units. 
First, it is affected by the shape of preceding unit due to inertia 
of articulatory organs. Thus, backward coarticulation has to take 
into account parameters of a preceding unit. Second, it is also 
affected by the unit that is to be pronounced consequently due 
to articulatory planning. Thus, forward articulation has to take 
into account parameters of next unit.

Coarticulation effect can be illustrated on difference in 
visual t in sequences ata, oto, utu, where t is so influenced by 
neighbouring vowels that it has almost no change in target from 
the vowel. On the opposite, p in sequences apa, opo, upu is also 
highly influenced by vowels, but due to lip closure has to reach 
the target in some parameters (closing lips). Compare these also 
with sequences apu or upa with different left and right context. 

Coarticulation can be different for different languages. Our 
aim was to evaluate two methods for Czech audio-visual speech 
synthesis. Several approaches exist for solution of coarticulation 
in visual speech synthesis. From those, we selected two 
approaches. First is method of dominance functions proposed by 
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hen and Massaro [1]. The idea is based on the theory of 
ech production [2]. This method uses target parameters for 
h visual speech unit and negative exponential functions to 
ress influence on neighbouring visual speech units. Second 
thod is the unit selection from clustered data. Similar method 
sed by Matoušek [3] in concatenation-based acoustic speech 
thesis. Unit selection from phonetically clustered data was 
d also by Galanes et al. [4]. We use modification of this 
thod using decision trees based on visual similarities. 

2. Data preparation 
e data driven models of coarticulation are necessary to train 
data of particular speaker. The next condition is also the 
ameterization of visual speech. We use in our experiments 
 parameterization of lips (only outer contour) and jaw. This 
es total 9 points in 3D (selection of 9 markers glued on the 
e, total dimension is 27). These geometric positions of points 
 obtained by noninvasive optical measurement. The 
ervation of each of points produces one 3D trajectory with 
 rate 25 fps deinterlaced to 50 fps for visual part and 44 kHz 
 acoustic, both streams are time synchronized. All the 
ectories approximate the movement and deformation of face 
face. For designed purpose, we mainly localize the muscle 
bicularis oris and rotation of jaw. 
The fact is that the amount of data from similar 

asurement is redundant. We have made the data reduction by 
ncipal component analysis (PCA). This method of reduction 
dimension makes statistical analysis in direction of data 
iance. We use singular value decomposition SVD. The 
d-made observation of main component leads to 
ension 3. We can find the shape of these components like: 

 first component (lip opening) by lower lisp and jaw, the 
ond lip rounding with protrusion and the last upper lip rising. 
ese parameters can be regarded as independent.  
Czech language uses 42 phonemes and 5 non-speech events, 
l 47 units. In this designed experiment, we don’t use 
vant visemes subset because we want to model visemes as 

ll as little divergences in each viseme subset. We obtained 
ual data for 3 speakers (1 female and 2 male) for Czech 
guage. The female speaker is the professional speaker and 2 
le speakers are students with nonprofessional articulation 
lls. The material is composed from 318 Czech sentences. The 
tences were corrected by hand-made annotation and then 
omatically transcribed by phonetic transcription. 
The text data was identical for all speakers and was 

lected from newspapers with resections good distribution of 
cent occurrence of phonemes and their context variants. The 
netic labeling of our data is made from synchronous 
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acoustic signal by well know viterbi-based forced alignment 
algorithm.

Recording of natural speech is a good way to analyze 
natural articulation. We recorded approximately one hour of 
natural speech per speaker. The advantage of our data is their 
direct usability for animation model. No extra transformations 
are needed. Animation model is created for every particular 
speaker using 3D reconstruction [5]. Geometric data in 
dimension 27 (9 points x 3 coordinates) correspond directly to 
the animation model [6] and in the best way control animation 
of a model and create visual speech. 

3. Dominance functions 
Cohen and Massaro [1] proposed a model based on Löfqvist [2] 
gestural theory of speech production. This coarticulation model 
describes the coarticulation by a dominance function. This 
dominance function describes the influence of the target 
parameter value for the actual speech unit on preceding and 
following visual speech units (visemes). Dominance function is 
based on a negative exponential function (1). 

cOteD  (1) 
This function falls from the center of the segment. This function 
is falling with running time t  from center segment. The rate of 
falling is driven by parameter c and O. The parameter c 
modifies the steepness and O modifies the rate of the falling. 
Cohen and Massaro [9] proposed function  

cOt
sp eD *  (2) 

where Dsp is the dominance of facial parameter p on the speech 
segment s. The coefficient  drives the magnitude of the 
dominance function and thus drives the magnitude of influence 
on neighboring speech segments. We can see the complete 
dominance function in (2). 

Cohen and Massaro used following alignment of the 
dominance function. Two dominance functions are defined for 
this parameter. Both functions start from centre of the speech 
segment. One function is falling along the running time and it 
models the forward coarticulation. Second function is falling 
against the running time and it models the backward 
coarticulation. The coefficient is shared for both the functions 
and determines the amplitude of dominance function in the 
centre of the segment.  

4. Visual unit selection 
Unit selection method solves the coarticulation problem by 
slightly different way. Instead of storing only one representative 
speech unit for concatenative synthesis, more instances of each 
speech unit are stored. These units are clustered using decision 
trees and set of appropriate questions. The sequence of 
questions of the decision tree is trained using test set 
maximizing contribution of each decision of the tree. 

These questions take into account usually left and rigtht 
context (preceding and following phoneme, affecting the actual 
one) and its properties (e.g. voiced/unvoiced, in visual case 
rounded/unrounded, etc.) 
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During synthesis, for each basic unit to be concatenated, the 
t fit unit is found using the trained decision trees and based 
all information about the actual segment, its context, real 
ations for synthesized speech, etc. This approach is widely 
d in acoustic speech synthesis. In visual speech synthesis, 
t selection is used rather rarely. One example is Galanes et 
[4]. However, they used the same set of questions for 
ision trees as for acoustic speech synthesis. But some 
netically similar segments can differ in visual expression 
 vice versa. We believe that unit selection approach would 
form better if special “visual” set of questions is used. 

5. Training of models 
ining is based on recorded data. Using stored data we can 
ermine part of trajectory for individual segments. Training is 
ried out for each PCA component separately. Question is 

 to best represent the speech segment (in our case a 
neme). In model based on dominance functions, every 
ment is represented by an articulation target. With help of 
ther parameters, the continuous trajectory is generated from 
se targets (while the targets itself may not be reached). 
We carried out data analysis and can coclude that every 

ment can be described by one value of articulation. It is not 
culation target in its original meaning. It is one realization of 
en phoneme in context of continuous speech. The equivalent 
ment in the visual parameterization describes the shift of lip 
pe for these phonemes. The target positions is taken from the 
inning of segment, in this place the lip shapes occur in full 
culation “targets”. This may be explained by the fact that the 
ic speech property is setting of articulatory organs before the 
ustic realization of phoneme.This selection of target position 
ears to be usefull for the concatenate base synthesis of visual 
ech. In this way, the target value for each PCA component is 
pared for each speech segment in the corpora. 
We divided corpus data into training and testing part. 
ining part is created from first 270 sentences. In this part we 
e phonetically balanced percentual occurence of every 
neme including those very rare. Second, testing part is made 

m rest of sentences (48 sentences).  

. Training procedure – dominance functions 

del using dominance functions (Cohen-Massaro model) 
putes each point of a trajectory as a weighted sum of all 

culation targets. The weights are given by the dominance 
gatively exponential) functions. These functions fall with 
e from target peak (originally placed in center of segment) to 
h sides (forward and backward dominance). However, we 
 time demarcation obtained from acoustic data and thus we 
 beginning of segment instead of its center. 
CM model has for each phoneme 5 unknown parameters 
get value, dominance, forward and backward falling and the 
ing rate). We used only 4 parameters as in original model 
t using the falling rate, considered as a global constant). 
ining of such number of free parameters is sped up by 
wledge of a gradient of training equation. We computed 

se gradients according to Beskow [7]. Training is carried out 
minimization of an error function that determines the 
dratic error between synthesized and measured trajectory. 

e training process was verified on testing data. 



We trained 47 basic speech units for 4 articulation 
parameters for 3 trajectories, together 564 unknown values. 
Each PCA component trajectory could be trained independently 
– for 188 unknown values. 

Process of training was stopped at the moment when error 
computed for training data stopped falling to avoid overtraining. 
Model was trained using truncated Newton bound constrained 
minimization with using for gradient information, which was 
implemented in the C language. 

5.2. Training procedure – visual unit selection 

The general idea is to take highest possible number of segment 
realizations for a particular phoneme and use them for synthesis. 
Our approach uses the same phoneme segments as previous 
model.

The aim of training of visual unit selection is to obtain the 
binary regression tree. The advantage is that the regression tree 
of particular phoneme should describe the most of variants of 
lip shape in the context other phonemes and have generalization 
property (aproximates even data (context) not seen during 
training). The three regression trees are construed from training 
data for each of 47 speech units.  

Before training, we collected all appearance of targets for 
each phoneme, initial cluster. The number of phoneme 
appearances differs from tens to thousands. We choose for tree 
construction a phonetic and metrical context of segments and 
algorithm finds which condition can be the best for the split of 
the cluster. The splitting is made with regard to the 
minimization of mean visual distance (impurity). We use the 
Euclidean distance. The using of classification and regression 
tree (CART) techniques [8] provides suitable clustering of 
visual similar segments. Algorithm recursively applies the 
splitting until the minimal size of each cluster node (5 elements) 
is reached. 

A regression tree walking is given by a specific sequence of 
questions that can answer binary value (yes or no) and returns 
the relevant set of response values. Each question asks if a 
requirement segment satisfies a given question. The requirement 
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Figure 1 Trajecto
Real (dotted line) and synthesized (solid line) trajectory for fema

for czech sentence „Rozhodn  odmítám zavedenou praxi, kdy 
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segment context can be continuous or discrete. Depending on 
 answers to one question, you either proceed to another 
stion or arrive at a fitted response value. The trees for some 

quent phonemes are very large, that is why we use the tree 
ning. Tree pruning is based on an optimal scheme that first 
nes branches giving less improvement in error cost. 

.1. The questions 

estions for construction of a decision tree are selected with 
aim of maximum coverage of coarticulation effects that 
ur during concatenation of units at the phoneme level. The 
stions are specific for lip articulation. We selected only 
se variants that are meaningful for such articulation. 
Questions are constituted in both discreet and continuous 

m. We selected such a set of questions that is most 
antageous for this purpose. Discreet questions utilize the 

m known from phonetical decision trees, e.g. “What is 
/right context of the segment?” Question can contain any 
set of 47 phonemes and thus can be either more general (“Is 
 left context vowel?”) or more specific (“Is the left context 
neme a?”) 
Next subset of questions is based on occurrence of closest 
rticulatory resistent phoneme. The neighbourhood of the 
ual segment is searched for a dominant phoneme. From all 47 
nemes we selected specific subset of candidates that are 
rticulation resistents (for example /pbm/, /fv/, vocals).  
Questions with continuous form of regression are 
stituted according to the time duration of neighbouring 
ments and also the actual segment itself. Such questions take 
 account the speed of a speech. 

. Synthesis 
 take the labels of test data set for determining timing of 
thesized trajectories. The phonetic context and time duration 
synthesized segments are set to relevant regression tree. The 
nd sequence of questions make tree walking from root to the 
et list value. The continuous trajectories are created by 

cewise cubic interpolation method. This method takes the 

ries. 
le speaker and parameter “mouth opening” (PCA1) 
mluv í pohotov  d lají svým koleg m advokáty.“



best simulation of movements that are observed in the real data. 
The interpolation connects target position of neighboring speech 
segments and ensures the sampling rate of 50 fps. 

6. Results
We carried out objective assessment of achieved results. We 
compared both coarticulatory models at the set of testing 
sentences. Results of the comparison can be expressed by 
various means. Graphical expression of difference between real 
and synthesized trajectory is depicted in Figure 1. Results for 
both coarticulation models are shown for female speaker and 
parameter PCA1 (“mouth opening”). 

To evaluate difference between the two coarticulation 
models we computed root mean square error (RMSE) between 
real and synthesized trajectory for each articulatory (PCA) 
parameter and for each speaker using corresponding testing data 
set. RMSE represents percentual deviation of given trajectory 
from given extent. RMSE reflects mostly errors that occur in 
higher amplitudes some small but important articulations may 
remain not noticed.

That is why we computed also Pearson's linear correlation 
coefficiens alike in [7] that can better assess total similarity 
(corrrectness) of the synthesized trajectory. Both RMSE and 
correlation figures are summarized in Table 1. 

From these results it can be seen that visual unit selection 
(VUS) performs slightly worse than CM model (dominance 
functions), but still at about the same level. For speaker 3 and 
parameter PCA3 even VUS outperforms CM model from the 
point of view of correlation. 

The problem of CM model is that the weighted sum of 
dominance functions does not ensure correct synthesis of 
targets, that are required to reach (such as the lip closure in 
bilabial stop for /pbm/ [7]). This property however is not 
readable in RMSE or correlation comparison. We proposed 
method that is free of this effect and has almost the same 
performance. Unlike in [4], we use questions based on visual 
features, which makes the decision trees more suitable for visual 
synthesis. Higher performance could be achieved by tuning the 
visually based decision tree questions. 
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Table 1. RMS errors and correlations for 3 speakers, 3 

Dominance functions 
 RMSE [%]     
speaker PCA1 PCA2 PCA3 average 
1 (male 1) 8,93 7,90 7,74 8,19
2 (male 2) 9,42 8,89 8,41 8,91 
3 (female) 8,75 7,10 8,96 8,27 
average 9,03 7,96 8,37 8,46

Visual unit selection 
 RMSE [%]     
speaker PCA1 PCA2 PCA3 average 
1 (male 1) 10,99 9,10 8,62 9,57
2 (male 2) 10,09 10,13 9,08 9,77 
3 (female) 8,70 7,65 8,73 8,36 
average 9,93 8,96 8,81 9,23
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parameters and both compared models. 

   
CORR       
PCA1 PCA2 PCA3 average 

0,8341 0,8453 0,7132 0,7975 
0,8028 0,8401 0,7202 0,7877 
0,7630 0,8444 0,6881 0,7652 
0,8000 0,8433 0,7072 0,7835 

   
CORR       
PCA1 PCA2 PCA3 average 

0,7531 0,7990 0,6707 0,7409 
0,7691 0,7699 0,6409 0,7266 
0,7561 0,8186 0,7243 0,7663 
0,7594 0,7958 0,6786 0,7446 
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