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Abstract. In the paper recent methods used in the task of speaker
recognition are presented. At first, the extraction of so called i-vectors
from GMM based supervectors is discussed. These i-vectors are of low di-
mension and lie in a subspace denoted as Total Variability Space (TVS).
The focus of the paper is put on Probabilistic Linear Discriminant Anal-
ysis (PLDA), which is used as a generative model in the TVS. The influ-
ence of development data is analyzed utilizing distinct speech corpora.
It is shown that it is preferable to cluster available speech corpora to
classes, train one PLDA model for each class and fuse the results at the
end. Experiments are presented on NIST Speaker Recognition Evalua-
tion (SRE) 2008 and NIST SRE 2010.
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1 Introduction

A major progress in the task of speaker recognition was done introducing su-
pervector based techniques. Supervector is in fact a high dimensional feature
vector obtained by the concatenation of lower dimensional vectors containing
speaker dependent parameters – the most effective turned out to be the param-
eters related to Gaussian Mixture Models (GMMs) [1]. First attempts to incor-
porate supervectors into the speaker recognition task utilized Support Vector
Machines (SVMs) along with distinct kernel functions [2]. Since GMMs belong
to the class of generative models, whereas SVMs are based on the discrimina-
tion between classes, the techniques comprising both methods are also known as
hybrid modelling. Subsequently, additional techniques were added to solve the
problem of the change of operating conditions, namely Nuisance Attribute Pro-
jection (NAP) [3]. NAP is based on an orthogonal projection, where directions
most vulnerable to environment changes are projected out. Since supervectors
are of substantially high dimension (tens of thousands), which is often higher
than the number of supervectors provided for the training, it is obvious that a
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lot of dimensions will be correlated with each other, and that the information
about the identity will be contained in a subspace of a much lower dimension.
This idea was incorporated into the principle of Joint Factor Analysis (JFA)
[4], where the word joint refers to the fact that not only the speaker, but also
the channel variabilities are treated in one JFA model. However, since experi-
ments in [5] showed that the channel space obtained by JFA does still contain
some information about the speaker’s identity, JFA was slightly adjusted giving
rise to identity vectors, or i-vectors [6]. The main difference between JFA and
i-vectors is that i-vectors do not distinguish between speaker and channel space.
They work with a total variability space containing simultaneously speaker and
channel variabilities, whereas JFA treats both spaces individually.

Parallel to JFA a very similar approach was introduced in the image recog-
nition called Probabilistic Linear Discriminant Analysis (PLDA) [7]. The only
difference from JFA is that in PLDA ordinary feature vectors are used instead
of GMM based supervectors (for details on the treatment of supervectors in JFA
see [4]). Since PLDA is a generative model, it allows to compute the probability
that several i-vectors originate from the same source, and thus it is well suited as
a verification tool for a speaker recognition system [8]. System presented in this
paper will utilize i-vectors (described in Section 3) based on GMM supervectors
(see Section 2) with a PLDA model (refer to Section 4) used in the verification
phase.

The crucial problem when proposing a speaker verification system composed
of modules (e.g. JFA, PLDA) described above is that data from a lot of speakers
are required, moreover several sessions have to be available for each speaker
in order to train a reliable i-vector extractor and a PLDA model. The problem
faced in this paper will address the question whether distinct speech corpora (e.g.
Switchboard 1, Switchboard 2, NIST SRE 2004, NIST SRE 2006, etc.) should
be pooled together and used to train one PLDA model, or if each corpus should
be used individually to train a separate PLDA model. In the latter scenario the
results are fused at the end. Experiments can be found in Section 5.

2 Supervector Extraction based on GMMs

At first a Universal Background Model (UBM) has to be trained. UBM is in fact
a Gaussian Mixture Model (GMM), however it is trained from a set containing
a lot of speakers. The speakers data should match all the conditions, in which
the recognition system is going to be used. UBM consists of a set of parameters
λUBM = {ωm,µm,Cm}Mm=1, where M is the number of Gaussians in the UBM,
ωm, µm, Cm are the weight, mean and covariance of the mth Gaussian, respec-
tively. Let Os = {ost}

Ts

t=1
be the set of Ts feature vectors ost of dimension D

belonging to the sth speaker, and

γm(ost) =
ωmN (ost;µm,Cm)

∑M

m=1
ωmN (ost;µm,Cm)

(1)
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be the posterior probability of mth Gaussian given a feature vector ost. And
let m0 = [µT

1 , . . . ,µ
T
m, . . . ,µT

M
]T be the supervector composed of UBM means.

Then, for each speaker two supervectors are extracted

ns =

Ts
∑

t=1

(

[γ1(ost), . . . , γm(ost), . . . , γM (ost)]
T ⊗ 1D

)

of size DM × 1,

bs =

Ts
∑

t=1

[

γ1(ost)o
T

st, . . . , γm(ost)o
T

st, . . . , γM (ost)o
T

st

]T

of size DM × 1, (2)

where ⊗ is the Kronecker product, and 1D is a D dimensional vector of ones.
Note that ns is the supervector containing ”soft” counts of feature vectors
aligned to Gaussians 1, . . . ,M , and denoting Ns a diagonal matrix containing
ns on its diagonal, ms = N−1

s bs is the new Maximum Likelihood (ML) esti-
mate of supervector m0 given the dataset Os. At last note that the Maximum
Aposteriory Probability (MAP) adaptation [9] of means of the UBM accord-
ing to the given data set Os expressed in the supervector notation is given as
mMAP = τms + (1 − τ)m0 for some relevance factor τ .

3 i-Vector Extraction

The concept of the i-vectors extraction is based on Factor Analysis (FA) ex-
tended to handle session and speaker variabilities of supervectors to Joint Fac-
tor Analysis (JFA) [4]. Contrary to JFA, different sessions of the same speaker
are considered to be produced by different speakers [5]. The generative i-vector
model has the form

ψs =m0 + Tws + ǫ, ws ∼ N (0, I), ǫ ∼ N (0,Σ) (3)

where T (of size D×Dw) is called the total variability space matrix (it contains
both the variabilities between speakers and the channel variabilities between
distinct sessions of a speaker), ws is the sth speaker’s i-vector of dimension Dw

having standard Gaussian distribution, m0 is the mean vector of ψs, however
often the UBM’s mean supervector is taken instead as a good approximation
(therefore the same notation m0 is used), and ǫ is some residual noise with a
diagonal covariance Σ constructed from covariance matrices C1, . . . ,Cm of the
UBM ordered on the diagonal of Σ.

To train the matrix T two steps are iterated in a sequence. Given a training
set of S couples of supervectors bs,ns, and the diagonal matrix Ns containing
ns on its diagonal, these steps are:

1. use previous estimate of T to extract new i-vectors for all speakers 1, . . . , S

ws = (I + TTΣ−1NsT )
−1TTΣ−1b̄s, (4)
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2. according to the new i-vectors compute block-wise a new estimate of T

Tm =

(

S
∑

s=1

b̄smw
T

s

)(

S
∑

s=1

Nsm

(

wsw
T

s +
(

I + TTΣ−1NsT
)

−1
)

)

−1

,

(5)

where b̄s = bs −Nsm0 is the centered version of bs around the mean m0, and
the index m in Tm, b̄sm, nsm (and Nsm) refers to blocks of T , b̄s, ns (and
thus to Nsm) of sizes D ×Dw, D × 1, D × 1 so that TT = [TT

1 ,TT
2 , . . . ,TT

M
],

b̄Ts = [b̄Ts1, b̄
T
s2, . . . , b̄

T
M
], nT

s = [nT
s1,n

T
s2, . . . ,n

T
M
], respectively. In fact, also Σ

may be updated in each iteration, for details see [10].

4 Probabilistic Linear Discriminant Analysis (PLDA)

Let us assume that the i-vector extractor (4) was already trained, and that for
each feature set Os of a speaker s one i-vector ws was extracted. Further, let
us assume that several sessions {Osh}

Hs

h=1
of a speaker s are available, and that

for each set of feature vectors Osh of each session h = 1, . . . , Hs one i-vector
wsh was extracted. Since in the i-vector extraction phase no distinction between
session space and speaker space were made a new model in the total variability
space will be now described that is going to utilize also the session variabilities.

PLDA is a generative model of the form

wsh =mw + Fzs +Grsh + ǫ, ǫ ∼ N (0,S) (6)

where mw is the mean of wsh, columns of F span the speaker identity space,
zs of dimension Dz are coordinates in this space and they do not change across
sessions of one speaker, columns of G span the channel space, rsh of dimension
Dr are the session dependent speaker factors, and ǫ is some residual noise with
diagonal covariance S and a zero mean. Further restrictions are put on distribu-
tions of latent variables zs and rsh, namely that both follow standard Gaussian
distribution N (0, I). Hence, wsh ∼ N (mw,FF

T + GGT + S). It is common
and reasonable assumption that Dz << Dw and that Dz +Dr ≈ Dw. To train
the model parameters F , G and S one has to solve the system of equations [7]
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(7)
and when rewritten to a compact form we get

ŵs = AHs
ẑs + ǫ̂, (8)

where ǫ̂ ∼ N (0, Σ̂Hs
). Matrices AHs

, Σ̂Hs
depend on s through the number of

their row- and column-blocks given by the number of sessions Hs of speaker s.
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Problem (8) is a standard FA problem, for details on how to solve it see the
appendix in [7].

4.1 Verification

In the verification phase two hypotheses are tested [7], namely

– hypotheses Hs that two i-vectors w1 and w2 share the same identity,
– hypotheses Hd that the identity of two i-vectors w1 and w2 differs.

The log-likelihood ratio is given as

LLR(w1,w2) = log
p(w1,w2|Hs)

p(w1|Hd)p(w2|Hd)
=

= logN

([

w1

w2

]

;

[

mw

mw

]

,

[

Cw CF

CF Cw

])

− logN

([

w1

w2

]

;

[

mw

mw

]

,

[

Cw 0

0 Cw

])

,

(9)

where Cw = FFT +GGT + S and CF = FFT. Note that in this verification
scenario we do not care about the form of the decomposition of w1 or w2 (latent
variables zs, rsh stay unknown). The question stated is whether two vectors
share the same identity given the subspaces generated by F and G.

5 Experiments

The question raised is whether all the available data from several distinct corpora
should be pooled and used to train one PLDA model (thus find a decomposition
of the total variability space based on all the available data), or if it would be
more efficient to find a characteristic decomposition of the total variability space
for each corpus individually (hence train several PLDA models), score each pair
of vectors in relation to each total space decomposition, and finally fuse the
obtained scores (we will use linear combination). We believe that the latter
case makes the verification more robust since possible undesirable deviations
in acoustic conditions of distinct corpora may become less evident. However,
individual corpora still have to contain enough data to be able to train a reliable
PLDA model.

5.1 Used Corpora

In order to be able to perform reliable tests we utilized corpora: NIST SRE
2004, NIST SRE 2005, NIST SRE 2006, Switchboard 1 Release 2 and Switch-
board 2 Phase 3 for development purposes, and NIST SRE 2008, NIST SRE
2010 were used for calibration of Fusion Coefficients (FCs), and for the evalu-
ation of generality of obtained FCs, respectively. We used only those speakers
from development corpora who had more than 4 recorded sessions. Further, the
development corpora were divided into 3 classes:



6 L. Machlica, Z. Zaj́ıc

1. NIST040506 – containing 3787 recordings of 465 males of approximately 8
sessions for each male speaker,

2. SW1 – containing 2342 recordings of 211 males of approximately 11 sessions
for each male speaker,

3. SW2 – containing 2183 recordings of 216 males of approximately 10 sessions
for each male speaker,

Each of the recordings had approximately 5 minutes in duration including the
silence. The division into the classes was made in relation to the similarity of
corpora determined according to recording conditions given in the LDC Corpus
Catalog1.

In order to train the FCs ”short2-short3 trials” from NIST SRE 2008 [11]
were utilized, only telephone speech from males was used (648 target speakers
and 1535 test speakers) yielding 16968 trials in total. To test the validity of
learned FCs ”core-core trials” from NIST SRE 2010 [12] were used, and again
only telephone speech from males was used (1394 target speakers and 2474 test
speakers) yielding 74762 trials in total. The duration of all the test and target
recordings in both corpora was approximately 5 minutes including the silence.

5.2 Feature Extraction

The feature extraction was based on Linear Frequency Cepstral Coefficients
(LFCCs), Hamming window of length 25 ms was used, the shift of the win-
dow was set to 10 ms. 25 triangular filter banks were spread linearly across the
frequency spectrum, and 20 LFCCs were extracted, delta coefficients were added
leading to a 40 dimensional feature vector. Also the Feature Warping (FW) nor-
malization procedure was applied utilizing a sliding window of length 3 seconds.
Right before the FW Voice Activity Detector (VAD), based on detection of ener-
gies in filter banks located in the frequency domain, was used in order to discard
the non-speech frames. All the feature vectors were at the end down-sampled by
a factor of 2.

The number of Gaussians in the UBM was set to 1024. The size of the total
variability space matrix T in the i-vector extraction was set to 1024 ∗ 40× 800,
thus the latent dimension (dimension of i-vectors) was Dw = 800. At last, the
dimension of the speaker identity space in the PLDA model was set to Dz = 100
and the dimension of the session/channel space was set to Dr = 800, thus F was
of size 800× 100, and the channel matrix was a square matrix of size 800× 800.
The disproportion between dimensions of speaker and channel subspaces was
adopted from [8].

5.3 Results and Analysis

UBM and the i-vector’s extractor described in Section 3 were trained on the
pooled dataset NIST040506 + SW1 + SW2. Next, three PLDA models were

1 http://www.ldc.upenn.edu/Catalog/index.jsp
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trained utilizing subsequently each of the 3 corpora classes. Trials from NIST
SRE 2008 were then scored using all 3 PLDA models, and the scores were used
to train the fusion coefficients via the linear logistic regression from the FoCal
toolkit [13]. Finally, in order to test the validity of learned FCs the same approach
was performed with trials from NIST SRE 2010, but the already learned FCs
were used in the linear combination of obtained scores. Results are shown in
Figure 1 and Table 1, also minimum of the Decision Cost Function (DCF) is
reported. In order to compute the value of DCF the cost of missing a target was
set to 10, the cost of the false alarm was set to 1, and the probability of seeing
a true trial was set to 0.01. These values are adopted from the NIST Speaker
Recognition Evaluation (SRE) 2008 [11].

We have trained one PLDA model also from polled corpora NIST040506
+ SW1 + SW2 (this was not used in the fusion). Best results are obtained
for the fused system in both NIST SRE 2008 and NIST SRE 2010. Note that
PLDA trained only on SW2 outperforms all the other PLDA models trained on
other corpora (even on the pooled corpora), but the fusion still increases the
performance of the speaker verification system. However, in real conditions one
can not rely only on one corpus (in this case it would be SW2) performing best
on the development set.
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Fig. 1. DET curves for NIST SRE 2008 and NIST SRE 2010. Circles denote points
where minDCF occurred.

Table 1. Results are given as EER [%] / minDCF. In the last column of the table also
results for PLDA trained on pooled corpora NIST040506 + SW1 + SW2 is given.

SW1 SW2 NIST040506 FUSION pooled

NIST 2008 9.87/0.034 8.47/0.041 8.83/0.043 7.06/0.031 8.78/0.045
NIST 2010 9.89/0.050 8.11/0.046 11.58/0.057 7.58/0.043 9.26/0.051



8 L. Machlica, Z. Zaj́ıc

6 Conclusion

Since often the verification conditions are unknown in advance (e.g. in the
Speaker Recognition Evaluations (SREs) organized by NIST and other insti-
tutions) we cannot count on the use of one specific speech corpus performing
best on the development set. It is more convenient to utilize several corpora.
We have shown that if the utilized corpora have sufficient amount of data to
train reliable PLDA models, it is preferable to train several PLDA models and
fuse the results. The verification becomes more robust since the deviations in
acoustic conditions of distinct corpora become less evident.
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