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Abstract

This paper introduces a new data-driven prosody model for th
text-to-speech system ARTIC. The model is intended to be al-
most language-independent and to generate naturally saund
intonation with a link to semantics. It is based on text patam

Prosodic sentence (PS)
Prosodic sentence is a prosodic manifestation of a sentnce
a syntactically consistent unit, yet it can also be unfirdsbe
grammatically incorrect.

Prosodic clause (PC)

sation using a new prosodic grammar and on automatic speech_PrOSOd'C clause is such a linear unit of a prosodic sentehaghw

corpora analysis methods. Its performance is evaluatedduts
of presented listening tests.

1. Introduction

Prosody is a very important element contributing to nahess

of synthetic speech and it is also an essential constitdensjpo-
ken message structure. As a consequence, modelling ofgyroso
has been already for a significant period of time treated a6n
the crucial areas of text-to-speech system design.

The prosody model presented in the following text is con-
ceptually similar to the approach of concatenative synshes-
riched with a unit selection approach): it concatenatemeie
tary prosody units derived from real speech data contained i
specially desighed and annotated prosody corpus. Thegyoso
units can have either one representant for a parametrisotia
specific portion of a text, or more representants and a pyosod

is delimited by pauses. A prosodic sentence generally stnsf
more prosodic clauses.

Prosodic phrase (PP)
Prosodic phrase is such a segment of speech where a certain in
tonation scheme is realized continuously. A prosodic dayen-
erally consists of more prosodic phrases.

Prosodeme (P0), (Px)
Prosodeme is an abstract unit established in a certain carmu
cation function within the language system. We have posdla
that any single prosodic phrase consists of two prosodests:
called “null prosodeme” and “functionally involved prosode”
(where (Px) stands for a type of the prosodeme chosen from the
list shown below), depending on the communication functian
speaker intends the sentence to have. In the present fesearc
distinguish the following prosodemes (for the Czech laggiia
other languages may need some modifications):

PO — null prosodeme; P1 — prosodeme terminating satisfac-

generation module chooses the best fitting one according to atorily (P1-1 unmarked; P1-2 marked directive; P1-3 marked e

particular criterion, as it is analogically in a TTS unitestion
approach.

This data-driven prosody model can achieve significantly
higher naturalness of resulting synthetic speech, silyitarthe
phenomenon when concatenative synthesis achieves higher n
uralness than formant synthesis. This paper deals onlyauith
tomatic fundamental frequenci@) modulation implemented in
the TTS system ARTIC [1], whereas questions of segmental du-
ration and voice intensity are left open.

2. Text parametrisation

Each word prosodic word respectively, see 2.1) of a sentence
to be synthesised is assigned to a parametrisation vériove
call it description array, DA) describing the word’s functioning
(in a linguistic sense) within the prosodic structure of ten-
tence. The parametrisation is based on the description efia s
tence by a derivation tree (callgmlosodic structure) produced
by theprosodic grammar when parsing the given sentence. This
article presents the prosodic grammar very briefly, morerinf
mation about it provides [2]. Justification for using suchadmn
stract linguistic structural framework in machine prosaodgd-
elling can be supported by general conclusions of [3]. Tleaid
of the formal prosodic structures and their constituentsased
on the Czech classical phonetic view [4].

2.1. Prosodic grammar

The generative prosodic grammar consists of the followiRg a
phabet (symbols used in the grammar rules are parenthgsised

pressive; P1-4 specific); P2 — prosodeme terminating gfiaati
torily (P2-1 unmarked (supplementary); P2-2 marked deelar
tory; P2-3 marked disjunctive; P2-4 specific); P3 — proscglem
nonterminating (P3-1 unmarked; P3-2 marked bound; P3-3 spe
cific)

Prosodic word (PW)
Prosodic word (sometimes also called phonemic word) is agro
of words subordinated to one word accent (stress). Language
with a non-fixed stress position would need a stress position
dicator too.

Semantic accent (SA)
By this term we call such a prosodic word attribute, which
indicates the word is emphasised (using acoustic means) by a
speaker.

There are two more terminal symbols used (“$” and “#")
standing for pauses differing in their placement (inted arira-
sentence). The terminal symbély;) stands for a concrete
prosodic word from a lexicon anfl means an empty termi-
nal symbol. Note thatPz is only an “abbreviation” for each
prosodeme (i.e. P1-1, etc.). The rules should be undershi®d
way: “(PC) — (PP){14+} #{1}" means that the symbol
(PC) (prosodic clause) generates one or maR) symbols
(prosodic phrases) followed by oge symbol (pause).

(PS) — (PO){1+} ${1} @)
(PC) — (PP){1+} #{1} @)
(PP) — (PO){1} (Pz){1} ®3)



(PO) — 0 4)

(PO) — (PW){1+} ®)
(Pz) — (PW){1} (6)
(Pz) — (SA{1} (PW){1+} @)
(PW) — (wi){1+} ®)

The grammar can be transformed into the Chomsky’s normal
form suitable for machine processing, yet the “intuitiveitrh
shown above is more explanatory. Again, [2] explains whaseh
rules mean in their relation to the language system.

2.2. Description function

Let Ps be a prosodic structure (i.e. derivation tree produced by
the prosodic grammar) of a given senteritel et Pvs be a set
of all nodes of Ps. For each node we can distinguish its type
(e.g. (PS), (PP), etc.), type of its left and right neighb@ithere
are any), the number of its neighbours, the number of its left
neighbours (i.e. actually the index of the current node iwiits
neighbours) and the link to its parent. From the theorepoaht
of view each node can be uniquely described (i.e. pararadris
by thedescription function,
D:Pns—D 9)
whereD = Pysx Pnsx N xNx® andN is the class of natural
numbers. The recursion of this function is not a problem bsea
all possible parsed trees are finite, although from the #imal
point of view we obtain an infinite-dimensional space. Farrea
nodeM € Pns we can determine

D(M) = (Iar,rar,ine, nar, D (par)) (10)

wherel,; is the type of the left neighbour d¥, r;, is the type

of the right neighbour of\/, i, is the index of M within the

scope of its neighboursy s is the number of neighbours aff

and® (par) is a description function of the parent nodeMdt If

M is the root node® (par) = 0, which stops the recursion.
There is an ad hoc definition of the description function spe-

cially for the terminal symbols (i.e. leaf nodes). This ftion

additionally includes intonationally relevant structifesatures of

a prosodic word:

Dr(M) = (nps,nsar, b, bne, Tar, i, e, © (par))  (11)

wheren, s is the number of phones @, nss is the number of
syllables ofM, i is the position of the stressed vowel. Such a
modified description function indeed involves analogicatiod-
ified domainDr.

For practical purposes of surface prosody modelling in TTS
systems, only the terminal symbols are further processedcél
itis quite sufficient to use just a part of the vector produiogthe
description function (11). Moreover, significant simpléfton of
the vector can bring benefit due to its high redundancy and low
impact of some of its components.

We have experimentally selected this simplification: numbe
of prosodic clauses of the sentence, index of the prosodicsel
the prosodic word appears in, prosodeme type the prosodit wo
appears in, prosodeme length (measured in prosodic wands),
dex of the prosodic word in its prosodeme, the number of sylla
bles of the prosodic word, the number of phones of the prasodi
word, index of the stressed vowel in the prosodic word. Itmsea
TTS system ARTIC assigns each prosodic word to these values.
However, it is important to prove the optimality of such a giim
fication. This is in the scope of the future research.

3. FOmodelling

Let us suppose we have a suitable speech corpus (ideally the
same one used for a particular speech segment databasergreat
with transcribed utterances, prosodic structure tagstfietran-
scribed sentences are prosodically parsed, as introductuki
previous section) and FO contours (e.g. acquired by elgictro
tograph measuring). Speech must be segmented at least on the
level of prosodic words (i.e. time intervals of prosodic der
must be known).

The FO countours are segmented according to the prosodic
words — this way we acquire the FO contour of each prosodic
word token (let us call such a segmemstib-contour). The corpus
used in ARTIC consists of 5,000 sentences involving 55,666 s
contours.

3.1. Realization function

In the process of FO generation of a synthesised sentence the
prosodic structure of the sentence is obtained first (byqulios
parsing) and then for each prosodic word its DA is determated
cording to (11) (or its suitable simplification respectigelEach

DA is then assigned to an appropriate FO segment usingegihe
ization function,

R : Dr — I x pot(C) (12)

whereZ = {ii,...,4} is a set ofinitial conditions, C
{c1,...,em} is a set ofcadences andpot(C) is a power set of

C. A cadence is an intonational pattern which fits into an waer

of a single prosodic word. The sétcan also be called @dence
inventory. Initial conditions say “where” a cadence chosen for a
prosodic word starts.

Each sub-contour acquired from the corpus is decomposed
into two components: (a) the initi&l0 value of the sub-contour;
(b) the rest of the sub-contour relatively to the initialualin its
multiples).

The realization function (12) also consists of two compo-
nents. The first one is constructed from the corpus by linking
each DA occurring in the corpus with the initigl0 value of
the respective sub-contour occurring with this DA in the-cor
pus. Since a particular DA is often assigned to more prosodic
word tokens in the corpus, there are usually more possile in
tial value links. In such cases the first sub-contour withvemgi
DA occurring in the corpus (supposing indeed arbitrary,cpet-
stant sentence numbering) is considered — this ensureyrhe s
thesised prosodemes to be intonationally “consistentbashie
prosodic word initial conditions because the initred values of
the prosodic words within a particular synthesised proswdare
all selected from the same sentence (otherwise it coulddrapp
that each initial condition in the synthesised prosodemseis
lected from a different sentence, although with the same DA)

The seC = {c1, ..., cm } (the cadence inventory) is created
by an agglomerative clustering algorithm (with variousgrae-
ters — depending on a type of an experiment) applied oR@ll
sub-contours from the corpus. Prior to this, the sub-costave
parametrised by vectors with the dimensioffe.g. by approxi-
mating each sub-contour withequidistant points relatively to its
initial value — this ensures sub-contour normalisationr dirae
intervals and~0 values). The elements Gf(i.e. cadences) are
constructed as either centroids of the clusters, or thevadgor
more) vector chosen from each cluster as its representsinig(u
various methods, such as elimination of outliers accorttiriga-
halanobis’ distance).

We have experimented with various valuesrofthe number
of cadences) ranging from 3 up to 200. Good results are asthiev



for example with the number of clustens = 30. In such a case
the smallest cluster consists ®f1 vectors (sub-contours) and
the largest o8571. The cadence inventory is created from the
cluster centroids.

We say a cadendeglongs to a particular DA provided that
the sub-contour occurring in the corpus with this DA is an ele
ment of the cluster represented by the given cadence. Thadec
part of the realization function (12) is constructed frore tior-
pus by linking each DA occurring in the corpus with the setlbf a
cadences belonging to this DA. Thus if we have a wordthen

R(Dr(w;)) = (i, C;) (13)
wherei; € 7 is the assigned initial condition arte; C C, C; =
{¢j1.¢i2,...,c;u, }is asetof the assigned cadences.

Now let a synthesised senten§de given as:

S wirwse ... wp (24)
The resulting generatdeD contour of the sentencgis formally

given by the operation:

arg min J(R(Dr(wi))o...

¢j,k€C;

°oRDr(wp)))  (19)

wherej =1...p,k =1...1;, ois an operation of juxtaposition
(simply placing one element next to each other) drid a crite-
rion function selecting one cadence out of more varianteéah
prosodic word, as will be shown further in the text. The minim
is calculated over all assigned cadences and all prosodidsved
the sentence.

3.2. Prosodic homonymy

One can easily see no corpus can offer all possible DAs antehen
it is impossible to construct the realization function ileal hus
the crucial importance for the realization function hasftilew-

ing principle of exchange:

VDZ',D]‘ c 'DT,DZ' 75 Dj : SR(DZ) = %(D]) = R(Di,Dj)

(16)
whereR(-, -) is arelation of indistinguishableness. Two descrip-
tion arrays are in the relation of indistinguishablenessvigied
that their different deep prosodic-semantic functions lbane-
alized by the same functor (i.e. same surface prosodic means
— two different DAs are homonymous in terms of their surface
realization and thus mutually interchangeable. Inforgnathe
realization function is defined also for those possible DAs n
occurring in the corpus; namely if a set of appropriate cadsn
is to be determined for a DA not occurring in the corpus, agoth
DA which occurs in the corpus and is homonymous according to
(16) is taken instead and the set of cadences and initialtans!
is determined for the new DA.

A question is how to determine the essential relation
R(D;, Dj) involved in (16). The best method is probably an
automatic analysis of heldout corpus data — this presupgpibse
heldout data include DAs not occurring in the training déta. (
factually unobserved) and the relation of indistinguidbabss
can be determined by a feasible generalisation of the mutual
lation between the training and heldout data. This gersatidin
can be formalised for instance by a specific DA space metrics
which allows to find a homonymous DA in terms of the mini-
mum vector distance.

However, research in this field has not been finished yet and
thus our TTS system ARTIC must now settle for a workaround
in the form of performing a number of limited perturbations

of the least significant (heuristically and experimentalbter-
mined) components of an unobserved DA (e.g. exact length of
a prosodic word in phones, exact number of prosodic clauses i
a sentence, etc.) which eventually transform the unobdebve

into such a DA that occurs in the corpus and is very likely to be
still homonymous.

3.3. Criterion function

The criterion function/ is responsible for choosing one firfe
contour from the variants proposed by the realization fionct
For each prosodic word of the synthesised sentence we have th
initial value of its respective synthesisé@ sub-contour and the
set of proposed cadences relatively to the initial value.

Let 4; be the initial condition of thej-th prosodic word
and C; = {cj1,¢j2,...,¢;, } the set ofl; cadences as-
signed to thej-th prosodic word. Each cadenegy is anz-
dimensional vector of the initial value multiples, i.e:j i, =
[2j,k,1 Zj k2 --- Zjk,2)- Glven the sentence (14) of at least two
words we generally use the following criterion function orery
similar one) ensuring minimurR0 discontinuities between adja-
cent prosodic words:

J (%(@T(wl)) ©...0 SR(@T(IUP))) j

=30 ((eikn 55 — €j-1,k,0 - 1j—1)

17

where & indicates thek-th cadence selected frof; for the
j-th prosodic word, a “smoothed” cadence onset g :
1 (zjk1 + 2j.k,2) and analogically a “smoothed” cadence offset
€j—1,kx = %(Zjﬂ,k,z + 2Zj_1,kae-1)

The first cadence is selected randomly (to enhance prosody
by the natural phenomenon of randomness) ft@irand the rest
is chosen so as to minimise the function (17) according ty (15
over all words and all assigned cadences .is.fixed for eacly
and the function/ is computed, then other cadences are selected
and newJ computed, untilJ is computed for all allowed ca-
dence combinations; eventually such a cadence sequene-is ¢
sen which gives the minimunf). The whole sentencgéO con-
tour is then constructed by multiplying components of atis#n
cadences with their respective initial conditions whileteaa-
dence spans the time interval of a single prosodic word.

4. Prosody quality evaluation

Each prosody generation module for a TTS system must eventu-
ally be evaluated by listening tests. Among a number of tests
have carried out particularly two of them are specially imiant

and will be presented further in this section.

4.1. Cadence candidate number

The first version of the above described data-driven prosody
model implementation in the TTS system ARTIC used only a
single cadence candidate for each DA, namely the most often o
curring one (in the corpus) with this particular DA. It mears
criterion functionJ was needed (respectively, the criterion was
implicitly included in the corpus analysis itself). We haaried
out a listening test to evaluate the naturalness differeeteeen
the single candidate version and the multiple candidatsiver

A set of sentences synthesised using both versions was pre-
pared and 14 test respondents were asked to decide whidbrvers
they perceived as more natural. The results have showntthat t
respondents preferred the multiple candidate version @ 60
all cases and in 20% of all cases they did not recognise any dif
ference.



Prosody Model MOS Results
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Figure 1: The results of the MOS evaluation of the monotonous
(m), rule-based (r), data-driven (d) and implanted (i) prosody of
synthetic speech.

4.2. Prosody naturalness evaluation

This test indirectly compares several method$-6fmodelling
(including a rule-based method [1]) by measuring the inter-
subjective criteria of the prosody quality using MOS teste#n
opinion score). This test involved 16 respondents lisi@gnin
to 12 different sentences, which were synthesised as fsllow
3 monotonous (further denoted @, 3 rule-based prosody) 3
data-driven prosodyd), 3 real “implanted” (denoted sentence
from the corpus newly synthesised with its origif&l). Each lis-
tener received these sentences in a random order (obviligtsly
teners were not told which method was used to generate a-parti

Prosody Style MOS Results
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Figure 2: The results of the MOS evaluation of the data-driven
prosody style similarity.

intonation is not appropriate for the sentence.

The results have fulfilled our expectations and show that
most synthesised sentences oscillate between the sco 3 an
which firstly means their prosody is considered to be apjmgpr
for given sentences and secondly their prosody style isharg
similar to the original one. We did not expect the score tahea
the mark 1 due to the very nature of prosody itself and theraatu
of our data-driven model which generalises the training daid
offers more appropriate intonation variants of a sentenkitew
randomly selecting one of them.

5. Conclusions

ular sentence) and was asked to give each sentence a mark fronf’rosody synthesised by the proposed data-driven model has

the scale 1 —5 (1 stands for worst, 5 for best) according théris
subjective opinion. No prior “calibration” (i.e. examplesgood

or bad sentences) was presented to the listeners since wedvan
them to express their own understanding of what (un)ndyural
sounding prosody is.

The results are shown in Figure 1. We can conclude this test
with the following: considerably higher naturalness of tata-
driven prosody model in comparison with the rule-based ane i
confirmed; the data-driven model is evaluated very well, n@t
much worse than the real intonation; real intonation is BsHp
ingly evaluated only by the mark 4 (it might point out thatdis-
ers cannot fully separate the segmental from the suprasggme
qualities of the synthetic speech, even though they arauicted
to do so); the monotonous version is often evaluated as gatte
urally sounding (i.e. despite of having the worst overallrkna

proved to be very natural and positively accepted by listen-
ers, as underlaid by the results of the listening tests. Tine c
rent research focuses mainly on experiments with a prabtoil
prosodic structure parser and the theoretical backgrodirideo
prosodic homonymy.

Employing the enhanced parser should significantly improve
the data-driven prosody naturalness by strengthening lbe<
tween sentence semantics and synthesised prosody. Tioeljgros
homonymy relation will increase the optimality of data cage
and also hopefully contribute to linguistic understandafghe
language phenomenon of prosody.
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some of the respondents gave the monotonous version even the

mark 4).

4.3. Prosody style evaluation

Figure 2 displays the results of a modified listening MOS test
aimed mostly at assessing how the data-driven model “cbpies

the prosody of the real speaker whose voice was used to record

the corpus for the model training. Ten sentences from theusor
(not included in the data-driven model training) were rantjo
chosen and synthesised using the data-driven prosody.

The test respondents (14 persons) first listened to a sentenc
uttered by the real speaker and then to its synthesisednerd
were asked to give this sentence a mark according to thenfollo
ing scale: 4 — the synthesised intonation is exactly sambaeas t
real one; 3 — the synthesised intonation is significantlyilaim
to the real one so that it is possible to recognise it comas fro
the same speaker (i.e. copies his/her prosody style); 2 sytie
thesised intonation differs from the real one, but is stliurally
sounding and appropriate for the sentence; 1 — the syn#tksis
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