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Abstract
This paper introduces a new data-driven prosody model for the
text-to-speech system ARTIC. The model is intended to be al-
most language-independent and to generate naturally sounding
intonation with a link to semantics. It is based on text parametri-
sation using a new prosodic grammar and on automatic speech
corpora analysis methods. Its performance is evaluated by results
of presented listening tests.

1. Introduction
Prosody is a very important element contributing to naturalness
of synthetic speech and it is also an essential constituent of a spo-
ken message structure. As a consequence, modelling of prosody
has been already for a significant period of time treated as one of
the crucial areas of text-to-speech system design.

The prosody model presented in the following text is con-
ceptually similar to the approach of concatenative synthesis (en-
riched with a unit selection approach): it concatenates elemen-
tary prosody units derived from real speech data contained in a
specially designed and annotated prosody corpus. The prosody
units can have either one representant for a parametrisation of a
specific portion of a text, or more representants and a prosody
generation module chooses the best fitting one according to a
particular criterion, as it is analogically in a TTS unit selection
approach.

This data-driven prosody model can achieve significantly
higher naturalness of resulting synthetic speech, similarly to the
phenomenon when concatenative synthesis achieves higher nat-
uralness than formant synthesis. This paper deals only withau-
tomatic fundamental frequency (F0) modulation implemented in
the TTS system ARTIC [1], whereas questions of segmental du-
ration and voice intensity are left open.

2. Text parametrisation
Each word (prosodic word respectively, see 2.1) of a sentence
to be synthesised is assigned to a parametrisation vectorD (we
call it description array, DA) describing the word’s functioning
(in a linguistic sense) within the prosodic structure of thesen-
tence. The parametrisation is based on the description of a sen-
tence by a derivation tree (calledprosodic structure) produced
by theprosodic grammar when parsing the given sentence. This
article presents the prosodic grammar very briefly, more infor-
mation about it provides [2]. Justification for using such anab-
stract linguistic structural framework in machine prosodymod-
elling can be supported by general conclusions of [3]. The idea
of the formal prosodic structures and their constituents isbased
on the Czech classical phonetic view [4].

2.1. Prosodic grammar

The generative prosodic grammar consists of the following al-
phabet (symbols used in the grammar rules are parenthesised):

Prosodic sentence (PS)
Prosodic sentence is a prosodic manifestation of a sentenceas
a syntactically consistent unit, yet it can also be unfinished or
grammatically incorrect.

Prosodic clause (PC)
Prosodic clause is such a linear unit of a prosodic sentence which
is delimited by pauses. A prosodic sentence generally consists of
more prosodic clauses.

Prosodic phrase (PP)
Prosodic phrase is such a segment of speech where a certain in-
tonation scheme is realized continuously. A prosodic clause gen-
erally consists of more prosodic phrases.

Prosodeme (P0), (Px)
Prosodeme is an abstract unit established in a certain communi-
cation function within the language system. We have postulated
that any single prosodic phrase consists of two prosodemes:so
called “null prosodeme” and “functionally involved prosodeme”
(where (Px) stands for a type of the prosodeme chosen from the
list shown below), depending on the communication functionthe
speaker intends the sentence to have. In the present research we
distinguish the following prosodemes (for the Czech language;
other languages may need some modifications):

P0 – null prosodeme; P1 – prosodeme terminating satisfac-
torily (P1-1 unmarked; P1-2 marked directive; P1-3 marked ex-
pressive; P1-4 specific); P2 – prosodeme terminating unsatisfac-
torily (P2-1 unmarked (supplementary); P2-2 marked declara-
tory; P2-3 marked disjunctive; P2-4 specific); P3 – prosodeme
nonterminating (P3-1 unmarked; P3-2 marked bound; P3-3 spe-
cific)

Prosodic word (PW)
Prosodic word (sometimes also called phonemic word) is a group
of words subordinated to one word accent (stress). Languages
with a non-fixed stress position would need a stress positionin-
dicator too.

Semantic accent (SA)
By this term we call such a prosodic word attribute, which
indicates the word is emphasised (using acoustic means) by a
speaker.

There are two more terminal symbols used (“$” and “#”)
standing for pauses differing in their placement (inter- and intra-
sentence). The terminal symbol(wi) stands for a concrete
prosodic word from a lexicon and∅ means an empty termi-
nal symbol. Note thatPx is only an “abbreviation” for each
prosodeme (i.e. P1-1, etc.). The rules should be understoodthis
way: “(PC) −→ (PP ){1+} #{1}” means that the symbol
(PC) (prosodic clause) generates one or more(PP ) symbols
(prosodic phrases) followed by one# symbol (pause).

(PS) −→ (PC){1+} ${1} (1)

(PC) −→ (PP ){1+} #{1} (2)

(PP ) −→ (P0){1} (Px){1} (3)



(P0) −→ ∅ (4)

(P0) −→ (PW ){1+} (5)

(Px) −→ (PW ){1} (6)

(Px) −→ (SA){1} (PW ){1+} (7)

(PW ) −→ (wi){1+} (8)

The grammar can be transformed into the Chomsky’s normal
form suitable for machine processing, yet the “intuitive” form
shown above is more explanatory. Again, [2] explains what these
rules mean in their relation to the language system.

2.2. Description function

Let PS be a prosodic structure (i.e. derivation tree produced by
the prosodic grammar) of a given sentenceS. Let PNS be a set
of all nodes ofPS . For each node we can distinguish its type
(e.g. (PS), (PP), etc.), type of its left and right neighbour(if there
are any), the number of its neighbours, the number of its left
neighbours (i.e. actually the index of the current node within its
neighbours) and the link to its parent. From the theoreticalpoint
of view each node can be uniquely described (i.e. parametrised)
by thedescription function,

D : PNS → D (9)

whereD = PNS×PNS×N×N×D andN is the class of natural
numbers. The recursion of this function is not a problem because
all possible parsed trees are finite, although from the theoretical
point of view we obtain an infinite-dimensional space. For each
nodeM ∈ PNS we can determine

D(M) = (lM , rM , iM , nM , D(pM)) (10)

wherelM is the type of the left neighbour ofM , rM is the type
of the right neighbour ofM , iM is the index ofM within the
scope of its neighbours,nM is the number of neighbours ofM
andD(pM) is a description function of the parent node ofM . If
M is the root node,D(pM) = ∅, which stops the recursion.

There is an ad hoc definition of the description function spe-
cially for the terminal symbols (i.e. leaf nodes). This function
additionally includes intonationally relevant structural features of
a prosodic word:

DT (M) = (npM , nsM , isM , lM , rM , iM , nM , D(pM)) (11)

wherenpM is the number of phones ofM , nsM is the number of
syllables ofM , isM is the position of the stressed vowel. Such a
modified description function indeed involves analogically mod-
ified domainDT .

For practical purposes of surface prosody modelling in TTS
systems, only the terminal symbols are further processed. Hence
it is quite sufficient to use just a part of the vector producedby the
description function (11). Moreover, significant simplification of
the vector can bring benefit due to its high redundancy and low
impact of some of its components.

We have experimentally selected this simplification: number
of prosodic clauses of the sentence, index of the prosodic clause
the prosodic word appears in, prosodeme type the prosodic word
appears in, prosodeme length (measured in prosodic words),in-
dex of the prosodic word in its prosodeme, the number of sylla-
bles of the prosodic word, the number of phones of the prosodic
word, index of the stressed vowel in the prosodic word. It means
TTS system ARTIC assigns each prosodic word to these values.
However, it is important to prove the optimality of such a simpli-
fication. This is in the scope of the future research.

3. F0 modelling
Let us suppose we have a suitable speech corpus (ideally the
same one used for a particular speech segment database creation)
with transcribed utterances, prosodic structure tags (i.e. the tran-
scribed sentences are prosodically parsed, as introduced in the
previous section) and F0 contours (e.g. acquired by electroglot-
tograph measuring). Speech must be segmented at least on the
level of prosodic words (i.e. time intervals of prosodic words
must be known).

The F0 countours are segmented according to the prosodic
words – this way we acquire the F0 contour of each prosodic
word token (let us call such a segment asub-contour). The corpus
used in ARTIC consists of 5,000 sentences involving 55,655 sub-
contours.

3.1. Realization function

In the process of F0 generation of a synthesised sentence the
prosodic structure of the sentence is obtained first (by prosodic
parsing) and then for each prosodic word its DA is determinedac-
cording to (11) (or its suitable simplification respectively). Each
DA is then assigned to an appropriate F0 segment using thereal-
ization function,

R : DT → I × pot(C) (12)

where I = {i1, . . . , il} is a set ofinitial conditions, C =
{c1, . . . , cm} is a set ofcadences andpot(C) is a power set of
C. A cadence is an intonational pattern which fits into an interval
of a single prosodic word. The setC can also be called acadence
inventory. Initial conditions say “where” a cadence chosen for a
prosodic word starts.

Each sub-contour acquired from the corpus is decomposed
into two components: (a) the initialF0 value of the sub-contour;
(b) the rest of the sub-contour relatively to the initial value (in its
multiples).

The realization function (12) also consists of two compo-
nents. The first one is constructed from the corpus by linking
each DA occurring in the corpus with the initialF0 value of
the respective sub-contour occurring with this DA in the cor-
pus. Since a particular DA is often assigned to more prosodic
word tokens in the corpus, there are usually more possible ini-
tial value links. In such cases the first sub-contour with a given
DA occurring in the corpus (supposing indeed arbitrary, yetcon-
stant sentence numbering) is considered – this ensures the syn-
thesised prosodemes to be intonationally “consistent” as for the
prosodic word initial conditions because the initialF0 values of
the prosodic words within a particular synthesised prosodeme are
all selected from the same sentence (otherwise it could happen
that each initial condition in the synthesised prosodeme isse-
lected from a different sentence, although with the same DA).

The setC = {c1, . . . , cm} (the cadence inventory) is created
by an agglomerative clustering algorithm (with various parame-
ters – depending on a type of an experiment) applied on allF0
sub-contours from the corpus. Prior to this, the sub-contours are
parametrised by vectors with the dimensionx (e.g. by approxi-
mating each sub-contour withx equidistant points relatively to its
initial value – this ensures sub-contour normalisation over time
intervals andF0 values). The elements ofC (i.e. cadences) are
constructed as either centroids of the clusters, or there isone (or
more) vector chosen from each cluster as its representant (using
various methods, such as elimination of outliers accordingto Ma-
halanobis’ distance).

We have experimented with various values ofm (the number
of cadences) ranging from 3 up to 200. Good results are achieved



for example with the number of clustersm = 30. In such a case
the smallest cluster consists of911 vectors (sub-contours) and
the largest of3571. The cadence inventory is created from the
cluster centroids.

We say a cadencebelongs to a particular DA provided that
the sub-contour occurring in the corpus with this DA is an ele-
ment of the cluster represented by the given cadence. The second
part of the realization function (12) is constructed from the cor-
pus by linking each DA occurring in the corpus with the set of all
cadences belonging to this DA. Thus if we have a wordwj , then

R(DT (wj)) = 〈ij , Cj〉 (13)

whereij ∈ I is the assigned initial condition andCj ⊆ C, Cj =
˘

cj,1, cj,2, . . . , cj,lj

¯

is a set of the assigned cadences.
Now let a synthesised sentenceS be given as:

S : w1 w2 . . . wp (14)

The resulting generatedF0 contour of the sentenceS is formally
given by the operation:

arg min
cj,k∈Cj

J (R(DT (w1)) ◦ . . . ◦ R(DT (wp))) (15)

wherej = 1 . . . p, k = 1 . . . lj , ◦ is an operation of juxtaposition
(simply placing one element next to each other) andJ is a crite-
rion function selecting one cadence out of more variants foreach
prosodic word, as will be shown further in the text. The minimum
is calculated over all assigned cadences and all prosodic words of
the sentence.

3.2. Prosodic homonymy

One can easily see no corpus can offer all possible DAs and hence
it is impossible to construct the realization function ideally. Thus
the crucial importance for the realization function has thefollow-
ing principle of exchange:

∀Di, Dj ∈ DT , Di 6= Dj : R(Di) = R(Dj) ⇔ R(Di, Dj)
(16)

whereR(·, ·) is arelation of indistinguishableness. Two descrip-
tion arrays are in the relation of indistinguishableness provided
that their different deep prosodic-semantic functions canbe re-
alized by the same functor (i.e. same surface prosodic means)
– two different DAs are homonymous in terms of their surface
realization and thus mutually interchangeable. Informally: the
realization function is defined also for those possible DAs not
occurring in the corpus; namely if a set of appropriate cadences
is to be determined for a DA not occurring in the corpus, another
DA which occurs in the corpus and is homonymous according to
(16) is taken instead and the set of cadences and initial conditions
is determined for the new DA.

A question is how to determine the essential relation
R(Di, Dj) involved in (16). The best method is probably an
automatic analysis of heldout corpus data – this presupposes the
heldout data include DAs not occurring in the training data (i.e.
factually unobserved) and the relation of indistinguishableness
can be determined by a feasible generalisation of the mutualre-
lation between the training and heldout data. This generalisation
can be formalised for instance by a specific DA space metrics
which allows to find a homonymous DA in terms of the mini-
mum vector distance.

However, research in this field has not been finished yet and
thus our TTS system ARTIC must now settle for a workaround
in the form of performing a number of limited perturbations

of the least significant (heuristically and experimentallydeter-
mined) components of an unobserved DA (e.g. exact length of
a prosodic word in phones, exact number of prosodic clauses in
a sentence, etc.) which eventually transform the unobserved DA
into such a DA that occurs in the corpus and is very likely to be
still homonymous.

3.3. Criterion function

The criterion functionJ is responsible for choosing one finalF0
contour from the variants proposed by the realization function.
For each prosodic word of the synthesised sentence we have the
initial value of its respective synthesisedF0 sub-contour and the
set of proposed cadences relatively to the initial value.

Let ij be the initial condition of thej-th prosodic word
and Cj =

˘

cj,1, cj,2, . . . , cj,lj

¯

the set of lj cadences as-
signed to thej-th prosodic word. Each cadencecj,k is an x-
dimensional vector of the initial value multiples, i.e.cj,k =
[zj,k,1 zj,k,2 . . . zj,k,x]. Given the sentence (14) of at least two
words we generally use the following criterion function (ora very
similar one) ensuring minimumF0 discontinuities between adja-
cent prosodic words:

J (R(DT (w1)) ◦ . . . ◦ R(DT (wp))) =

=
Pp

j=2

`

(εj,k,1 · ij − εj−1,k,x · ij−1)
2
´ (17)

where k indicates thek-th cadence selected fromCj for the
j-th prosodic word, a “smoothed” cadence onset isεj,k,1 =
1

2
(zj,k,1 + zj,k,2) and analogically a “smoothed” cadence offset

εj−1,k,x = 1

2
(zj−1,k,x + zj−1,k,x−1).

The first cadence is selected randomly (to enhance prosody
by the natural phenomenon of randomness) fromC1 and the rest
is chosen so as to minimise the function (17) according to (15)
over all words and all assigned cadences (i.e.k is fixed for eachj
and the functionJ is computed, then other cadences are selected
and newJ computed, untilJ is computed for all allowed ca-
dence combinations; eventually such a cadence sequence is cho-
sen which gives the minimumJ). The whole sentenceF0 con-
tour is then constructed by multiplying components of all chosen
cadences with their respective initial conditions while each ca-
dence spans the time interval of a single prosodic word.

4. Prosody quality evaluation
Each prosody generation module for a TTS system must eventu-
ally be evaluated by listening tests. Among a number of testswe
have carried out particularly two of them are specially important
and will be presented further in this section.

4.1. Cadence candidate number

The first version of the above described data-driven prosody
model implementation in the TTS system ARTIC used only a
single cadence candidate for each DA, namely the most often oc-
curring one (in the corpus) with this particular DA. It meansno
criterion functionJ was needed (respectively, the criterion was
implicitly included in the corpus analysis itself). We havecarried
out a listening test to evaluate the naturalness differencebetween
the single candidate version and the multiple candidate version.

A set of sentences synthesised using both versions was pre-
pared and 14 test respondents were asked to decide which version
they perceived as more natural. The results have shown that the
respondents preferred the multiple candidate version in 60% of
all cases and in 20% of all cases they did not recognise any dif-
ference.
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Figure 1: The results of the MOS evaluation of the monotonous
(m), rule-based (r), data-driven (d) and implanted (i) prosody of
synthetic speech.

4.2. Prosody naturalness evaluation

This test indirectly compares several methods ofF0 modelling
(including a rule-based method [1]) by measuring the inter-
subjective criteria of the prosody quality using MOS tests (mean
opinion score). This test involved 16 respondents listening
to 12 different sentences, which were synthesised as follows:
3 monotonous (further denoted asm), 3 rule-based prosody (r), 3
data-driven prosody (d), 3 real “implanted” (denotedi; sentence
from the corpus newly synthesised with its originalF0). Each lis-
tener received these sentences in a random order (obviouslylis-
teners were not told which method was used to generate a partic-
ular sentence) and was asked to give each sentence a mark from
the scale 1 – 5 (1 stands for worst, 5 for best) according to his/her
subjective opinion. No prior “calibration” (i.e. examplesof good
or bad sentences) was presented to the listeners since we wanted
them to express their own understanding of what (un)naturally
sounding prosody is.

The results are shown in Figure 1. We can conclude this test
with the following: considerably higher naturalness of thedata-
driven prosody model in comparison with the rule-based one is
confirmed; the data-driven model is evaluated very well, i.e. not
much worse than the real intonation; real intonation is surpris-
ingly evaluated only by the mark 4 (it might point out that listen-
ers cannot fully separate the segmental from the suprasegmental
qualities of the synthetic speech, even though they are instructed
to do so); the monotonous version is often evaluated as quitenat-
urally sounding (i.e. despite of having the worst overall mark,
some of the respondents gave the monotonous version even the
mark 4).

4.3. Prosody style evaluation

Figure 2 displays the results of a modified listening MOS test
aimed mostly at assessing how the data-driven model “copies”
the prosody of the real speaker whose voice was used to record
the corpus for the model training. Ten sentences from the corpus
(not included in the data-driven model training) were randomly
chosen and synthesised using the data-driven prosody.

The test respondents (14 persons) first listened to a sentence
uttered by the real speaker and then to its synthesised version and
were asked to give this sentence a mark according to the follow-
ing scale: 4 – the synthesised intonation is exactly same as the
real one; 3 – the synthesised intonation is significantly similar
to the real one so that it is possible to recognise it comes from
the same speaker (i.e. copies his/her prosody style); 2 – thesyn-
thesised intonation differs from the real one, but is still naturally
sounding and appropriate for the sentence; 1 – the synthesised
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Figure 2: The results of the MOS evaluation of the data-driven
prosody style similarity.

intonation is not appropriate for the sentence.
The results have fulfilled our expectations and show that

most synthesised sentences oscillate between the score 3 and 2,
which firstly means their prosody is considered to be appropriate
for given sentences and secondly their prosody style is largely
similar to the original one. We did not expect the score to reach
the mark 1 due to the very nature of prosody itself and the nature
of our data-driven model which generalises the training data and
offers more appropriate intonation variants of a sentence while
randomly selecting one of them.

5. Conclusions
Prosody synthesised by the proposed data-driven model has
proved to be very natural and positively accepted by listen-
ers, as underlaid by the results of the listening tests. The cur-
rent research focuses mainly on experiments with a probabilistic
prosodic structure parser and the theoretical background of the
prosodic homonymy.

Employing the enhanced parser should significantly improve
the data-driven prosody naturalness by strengthening links be-
tween sentence semantics and synthesised prosody. The prosodic
homonymy relation will increase the optimality of data coverage
and also hopefully contribute to linguistic understandingof the
language phenomenon of prosody.
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