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Abstract

This paper describes data-driven modelling of laleé¢ basic
prosodic features — fundamental frequency, intgnsitd
segmental duration — in the Czech text-to-speeclhiersys
ARTIC. The fundamental frequency is generated byodeh
based on concatenation of automatically acquireshational
patterns. Intensity of synthesised speech is medely
experimentally created rules which are in confoymitith
phonetics studies. Phoneme duration modelling lwasbeen
previously solved in ARTIC and this paper presenés fifst
solution to this problem using a CART-based approach.

1. Introduction

Concatenative text-to-speech (TTS) synthesis of Gzech
language has been researched, elaborated and ienksin
already for a significant period of time. Duringisthperiod
various prosody models have been proposed, yeast o our
knowledge there has not been implemented and padygti
applied any complexata-driven (in the sense of automatic
training using very large real speech databasesppy model
of all three basic prosodic characteristics (iilendamental
frequency (FO0), intensity and segmental duratioogaither).

This paper tries to present such a prosody model
implemented in the TTS system ARTIC, developed at the
Department of Cybernetics, University of West Boheftia
The model is formally based on a linguistically mated
structural prosody description framework, which lexgy
separates prosodic function from its form. The faméntal
frequency generation part of the model is basedwndata-
driven intonation model previously introduced foample in
[4], whereas intensity modelling is rule based. Thest
recent advance presented in this paper consists in
incorporating a CART-based duration model trained aon
large speech corpus.

2. Prosody description framework

The prosody model used in TTS system ARTIC is based o
explicit distinction between prosodic form and ftion. The
importance of such a form of linguistic stratificet has
already been frequently discussed (let us at ranch@mtion
for instance [2]).

2.1. Prosodic form and function

In our conception each input sentence is repregantéorm
of a prosodic structure. The prosodic structura igsult of
parsing a sentence using a specific set of linigaity
motivated transformation rules collectively callpdosodic
grammar The prosodic structure of a sentence formally
corresponds to a prosodic function while a prosdatim (i.e.
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how prosody is eventually realized by acoustic mean
“surface” prosody) is then derived from it (i.eethallowed

prosodic forms depend purely on the prosodic fumcti
together with phonotactics restrictions, not on tkgt or

sentence itself).

In other words — the prosodic structure determiaes
parameterisation of input text and this paramedéda is
then used in a system for prosodic form assignniiemt a
classifier, knowledge base, unit selection algaritietc.). It is
not a goal of this paper to fully describe the pubis
structures and grammar — the discussion on this tm be
rather found in [3]. The following paragraphs jusiefly
summarise some information necessary as a backgrfoun
our TTS prosody model.

2.2. Prosodic grammar

The prosodic grammar tries to capture structurifigao
sentence relevant for prosody functioning. Usingegative-
based rules it decomposes a sentence into its imteed
constituents (terminals and non-terminals) and mdutu
relations between these constituents formalise pttosodic
function. The grammar (or rather its equivalent Chkyts
normal form) is designed to be implemented in alsstic
grammar parser, which is now being developed astkde
We distinguish the following language units servig the
grammar terminal and non-terminal  constituents
(parenthesised symbols are used in the respectamngar
rules):

Prosodic sentence (PS)

Prosodic sentence is a prosodic manifestation of a
sentence as a syntactically consistent unit, yeaiit also be
unfinished or grammatically incorrect.

Prosodic clause (PC)

Prosodic clause is such a linear unit of a prosodic
sentence which is delimited by pauses. A proseditence
generally consists of more prosodic clauses.

Prosodic phrase (PP)

Prosodic phrase is such a segment of speech where a
certain intonation scheme is realized continuouslgrosodic
clause generally consists of more prosodic phrases.

Prosodeme (P0), (Px)

Prosodeme is an abstract unit established in aicert
communication function within the language syst@#e. have
postulated that any single prosodic phrase consistsvo
prosodemes: so called “null prosodeme” and “fumlty
involved prosodeme” (where (Px) stands for a typehe
prosodeme chosen from the list shown below), depgnan
the communication function the speaker intendsstdrgence



to have. In the present research we distinguistHath@wing
prosodemes (for the Czech language; other languaggs
need some modifications):

¢ PO — null prosodeme

« P1 - prosodeme terminating satisfactorily (a réplyot
expected)

0o P1-1unmarked

0 P1-2 marked directive

o P1-3 marked expressive
o P1-4 specific

¢ P2 — prosodeme terminating unsatisfactorily (ayrépl
expected)

o0 P2-1 unmarked (supplementary, “wh-questions”)
o0 P2-2 marked declaratory (“yes/no questions”)

o P2-3 marked disjunctive (questions with disjunctive
uorﬂ)

o P2-4 specific
¢ P3 - prosodeme nonterminating
0 P3-1unmarked

o0 P3-2 marked bound (involved in a function
primarily held by P1 or P2)

o P3-3 specific

Prosodic word (PW)

Prosodic word (sometimes also called phonemic wisrd)
a group of words subordinated to one word acceaness).
Languages with a non-fixed stress position woul@édne
stress position indicator too.

Semantic accent (SA)

By this term we call such a prosodic word attributkich
indicates the word is emphasised (using acoustans)eby a
speaker.

There are two more terminal symbols used (“$" a#§) “
standing for pauses differing in their placememtei- and
intra-sentential). The terminal symbdlv) stands for a
concrete prosodic word from a lexicon didneans an empty
terminal symbol. Note tha®x is only an “abbreviation” for
each prosodeme (i.e. P1-1, etc.). The rules shddd
understood this way: “(PC) (PP) {1+} # {1}" means that
the symbolPC) (prosodic clause) generates one or niBi)
symbols (prosodic phrases) followed by one # symbol
(pause).

(PS)- (PC) {1+} $ {1}

(PC) - (PP) {1+} # {1}

(PP) - (PO) {1} (Px) {1}
(PO) - O

(PO) —» (PW) {1+}

(Px) ~ (PW) {1}
(Px) —~ (SA) (PW) {1+}

(PW) - w; {1}

Figures 1 and 2 show two possible prosodic strestof
the Czech sentence: “It is not a singular transftéionaof a
long vowel into a diphthong.” However, the secoratiant
bears a semantic accent on the word “singular’sst dring
forward the contrastive focus as the opposite df. e.

“frequent”.
(PS)

(PC)

®p)  (PP)

(PO)  (P3-1) (Pg) (P‘I—l)

(PW) PW) (PW) (PW) (PW) (PW)

(neni to) (ojedinéld)(zména) (dlouhé)(samohlasky) (v dvojhlasku)

Figure 1: Czech sentence prosodic structure in a neutral
form.

(PS)

(PO)

(PP)

(PO)  (P1-1)

\\ N

K

(PW) Sew) W) oWy ew) (W)

(nenito)  (SA) (ojedinéld) (zména) (dlouhé) (samohlasky) (v d\\\/ojhlésku)

Figure 2: Czech sentence prosodic structure with a
semantic accent.

It is not a simple task to infer the full prosodittucture
from the surface form of a sentence. This can e dsing a
probabilistic grammar parser similar to a parseedugor
syntax analysis — on one hand the prosodic passeinipler
due to far less complex grammar, but on the otla@dhhe
relations among prosodic constituents are not earchand
straightforward as among syntactic constituentsc@se of
prosody many phenomena are facultative, singulaevan
random). Hence the goal of the prosodic parseotisancreate
couple of “definitely correct” prosodic structure$ a given
sentence; rather it should delimit a class of pdasstructures
acceptable in a given context.

Because of such peculiarities we have not yet
implemented fully working automatically trained gar into
ARTIC and the task of prosodic structure parsingasied
out by a set of heuristic rules. These rules angooisly far



from performing optimally (for example they are wer
inaccurate in prosodic phrase detection and semantients
have to be omitted at all) but they are treated &éamporary
solution.

3. FO modelling

It is beyond the scope of this paper to fully disethe data-
driven model of FO implemented in ARTIC - more
information on this (including the model evaluadiaran be
found in [4]. However, the basic idea is in confaynwith
the aforementioned considerations about dualitprosodic
form and function.

From the formal point of view all information about
prosodic function of each word is encoded in thespdic
structure itself and hence the position of the waithin the
structure. Therefore the prosodic form realisednians of
FO behaviour depends purely on positions of thesguii
words within the prosodic structure of a given seoe.

The position of a prosodic word (“position” not the
exact meaning — rather we would use it in the sehseutual
configuration between prosodic words and their pare
prosodic constituents) is described by a set dufea (we
refer to it as description array — DA) which inctudor
instance: index of the prosodic word within its giours
with the same parent node, type of its parent narf its
index (and this recursively up to the root nodejd also
various quantitative features concerning syllalsitess and
phoneme structure of the word. More details on A be
found in [4].

The relation between prosodic function (formulated
through DA) and its form is represented by a fuorctin the
mathematical sense, which we refer taeadization function
(because it realizes the function through the forie
realization function is created from a suitableegecorpus
(ideally the same one used for a particular spessgment
database creation) with transcribed utterancessoglio
structure tags (i.e. the transcribed sentenceprasodically
parsed) and FO contours (e.g. acquired by elecittogiraph
measuring). Speech must be segmented at leasedevel of
prosodic words (i.e. time intervals of prosodic d@must be
known).

The FO contours are segmented according to thegios
words — this way the FO contour of each prosodicdvioken
is acquired (let us call such a segmergul-contouy. The
corpus used in ARTIC consists of 5,000 sentencesvimgp
55,655 sub-contours which are then clustered intcailed
cadencegabstract intonational patterns — as will be descr
further in the text).

3.1. Realization function

The realization function is defined as
R: DA— | x pot(C)

wherel = {iy, ..., i} is a set of initial conditionsC = {c,, ...,

Cnt is a set of cadences amibt(C) is a power set ofC.

A cadence is an intonational pattern which fit® iab interval

of a single prosodic word. The s€tcan also be called a
cadence inventory. Initial conditions say where te
frequency scale a cadence chosen for a prosodit starts.

Fujisaki shows [5] that FO can be modelled in a

logarithmic space as a sum of outputs of two lirmestems.

In the linear space this summation corresponds to a
multiplication of values, therefore each sub-contdas a
segment of a whole FO trajectory) acquired from ¢bepus

can be decomposed into two components: (a) thalift0
value of the sub-contour; (b) the rest of the sobtour
relatively to the initial value (in its multiples).

The realization function also consists of two comgas.
The first one is constructed from the corpus bxilig each
DA occurring in the corpus with the initial FO velwf the
respective sub-contour occurring with this DA i ttorpus.
Since a particular DA is often assigned to sevprakodic
word tokens in the corpus, there are usually marssiple
initial value links. In such cases the first sulmowr with a
given DA occurring in the corpus (supposing indesdaltrary,
yet constant sentence numbering) is considereds-etisures
the synthesised prosodemes to be intonationallpsistent”
as for the prosodic word initial conditions becattse initial
FO values of the prosodic words within a particular
synthesised prosodeme are all selected from thee sam
sentence (otherwise it could happen that eachaimitindition
in the synthesised prosodeme is selected from ferelift
sentence, although with the same DA).

The setC ={c,, ..., ¢} (the cadence inventory) is created
by a clustering algorithm based on repeated bimestand
cosine similarity function, applied on all FO sutmtours
from the corpus. Prior to this, the sub-contourse ar
represented by vectors with the dimensian (i.e. by
approximating each sub-contour with equidistant points
relatively to its initial value — this ensures stimtour
normalisation over time intervals and FO valuesheT
elements ofC (i.e. cadences) are constructed as either
centroids of the clusters, or there is one (or moextor
chosen from each cluster as its representativaqusirious
methods, such as elimination of outliers accordittg
Mahalanobis distance).

We have experimented with various values nof(the
number of cadences) ranging from 3 to 200. Goodltesre
achieved for example with the number of clusters30. In
this case the smallest cluster consists of 91lovedtsub-
contours) and the largest of 3571. The cadencentowe is
created from the cluster centroids.

We say a cadendeelongsto a particular DA provided
that the sub-contour occurring in the corpus witis DA is
an element of the cluster represented by the goastence.
The second component of the realization function is
constructed from the corpus by linking each DA adag in
the corpus with the set of all cadences belonginthis DA.
Thus if we have a prosodic wowg, then

R(DA(VVJ)) = <ij, Cj>

wherei; O | is the assigned initial condition a@i0 C, C; =
{G1 G2 ..., Gy} is a set of the assigned cadences. Now let
the synthesised senter8ée given as:

S WW ... W,

The resulting generated FO contour of the sent&ise
then constructed from the initial conditions andlexces
given by the realization function for each prosodiard wy,

... W, — the initial conditions are FO values at the hegigs
of the prosodic words and the cadences actuallyhi#l gaps
between neighbouring initial conditions by FO value



calculated as multiples of the initial conditiodss it can be
seen from the definition of the realization funatithe set of
several suitable cadences is given for each prosedid —
only one of them must be chosen at a time. Thioise by a
criterion function, minimised over all combinationsf

proposed cadencies. One of the choices for therionit
function is for example a sum of differences ofw&lues on
the boundaries of the prosodic words — to avoidtoleast
minimise FO discontinuities in junctures where aaglence
ends and the next one (based on a different irdtadition)
starts. This process of cadence concatenation ssrided
together with the criterion function in more detai[4].

3.2. Prosodic homonymy

One can easily see no corpus can offer all pos§ifle
and therefore it is impossible to construct thelization
function ideally. Hence the crucial importance ftre
realization function has theelation of indistinguishableness
[4]. Two description arrays are in the relation of
indistinguishableness provided that their differedeep
prosodic-semantic functions can be realized by sheme
functor (i.e. same surface prosodic means) — twierdnt
DAs are homonymous in terms of their surface rattin and
thus mutually interchangeable. Informally: the ization
function is defined also for those possible DAs ooturring
in the corpus; namely if a set of appropriate cadsris to be
determined for a DA not occurring in the corpusptaer DA
which occurs in the corpus and is homonymous adogrih
the aforementioned relation, is taken instead dmedset of
cadences and initial conditions is determinedtierriew DA.

A question is how to determine the relation of
indistinguishableness. The best method is probadty
automatic analysis of heldout corpus data — thésygpposes
that the heldout data include DAs not occurringhia training
data (i.e. factually unobserved) and the relatioh o
indistinguishableness can be determined by a fieasib
generalisation of the mutual relation between thing and
heldout data. This generalisation can be formalised
instance by a specific DA space metrics which adlaovfind
a homonymous DA in terms of the minimum vectoratise.

However, research in this field has not been sstakys
finished yet and thus our TTS system ARTIC must nettles
for a workaround in the form of performing a numbmdr
limited perturbations of the least significant (tistically and
experimentally determined) components of an unaleseDA
(e.g. exact length of a prosodic word in phonengesct
number of prosodic clauses in a sentence, etc.)chwhi
eventually transform the unobserved DA into sudbfathat
occurs in the corpus and is very likely to be still
homonymous.

4. Intensity modelling

It has been often discussed in Czech phonetigatite that
intensity (or loudness — as a psychological coteelaf
intensity) is of far less importance than fundaraént
frequency with respect to suprasegmental featufrespeech,
therefore our prosody model pays significantly lagsntion
to it.

Moreover, we have undertaken theoretical consierst
of modelling intensity analogically to fundamenfi@quency,
i.e. by “intensity cadencies”. However, since irdigynis much

more interconnected with segmental qualities ofespethe
application of such a model is not as straightfodaas in the
case of fundamental frequency (intensity can hegtdbas sort
of a distinguishing feature of a phoneme, unlikeviGch is
basically present at voiced phonemes and not presen
unvoiced phonemes).

Considering the aforementioned, our prosody model
currently incorporates only a simple rule for irgiy
modelling. Czech phonetics studies usually mentiomes
increase of intensity (or perceived loudness) amessed
syllables. We have experimentally revealed thatedmn
increase of speech signal amplitude by 1.3 on sstes
syllables is well assessed by listeners evaludtiegesulting
synthesised speech. This is in conformity with§&ting that
stressed syllables usually feature increase ohgitielevel by
1-3dB.

5. Segmental duration modelling

All previous versions of our prosody model did womprise
any explicit duration modelling techniques and hdeen
using only average lengths of phonemes from segdent
speech corpus. However, in our recent research awe h
incorporated and implemented a Classification and
Regression Tree (CART) approach for segmental duration
modelling, mainly because of possibility of itsaéghtforward
application and rich experience of other reseaeeims. Our
experiments are similar to [7], [8] but there issdamportant
difference — we do not use only one regression foeeall
phonemes, rather we have trained an independeatfare
each phoneme (experiments with a single universal have
reached worse score for us).

5.1. Training data

Training data for tree construction consists 00B,(hdicative
sentences recorded by a female voice talent (the siata
have been used also for the acoustic unit inventoegtion
and for fundamental frequency modelling). Thesemiags
have been automatically segmented by a statistjgpitoach
(HMM-based). Resulting inventory counts over 400,000
phonemes where each of them has been representéd2by
features (as it is described further).

5.2. Phoneme features

For the sake of the CART-based classification eadngime
token (i.e. occurrence of a phoneme) is represelfeed
described) by a set of 172 features which can be
methodologically divided into five groups. Since an
independent tree is built for each phoneme type {tlord
“type” is used here in the sense of commonly unidets
duality “token/type” — “type” is the phoneme itse#ind
“token” its textual occurrence), the phoneme tyigelf is not
included among the features.

5.2.1. Basic feature groups

These groups of features are derived from phongpestof
neighbouring phonemes and their categorisation into
phoneme classes such as vowel, consonant, fricatiosive,
etc.



Features defined by neighbour type form the firsug:

e previous_type/next_type- the type of the previous/next
phoneme. If the phoneme stands as the first/lastioa
sentence, the symbol "_" (underscore) is used\aduz
of this feature.

e previous2_type/next2_type —the type of a phoneme
which stands over one phoneme before/after. Idalhtic
as in the previous case the underscore symbolkes s
case the type of the phoneme cannot be obtained.

The second group is based on membership of a plohgma
into specified phoneme classes. The classes aregiished
by various articulatory and phonational criteriag(evowel
quantity, sonority, articulation place and manméc,). Values
of the features are either true or false — depgndmwhether
a phoneme type is or is not a member of the gil@ssc

5.2.2.  Feature groups based on prosodic grammar

The next feature groups describing phonemes argllmsthe
prosodic grammar described in Section 2 of thisepap
(although not all grammar attributes are used)r§sentence
is thus structured hierarchically into the constitts resulting
from the prosodic grammar, i.e. prosodic sentepcesodic
clause, prosodic phrase, prosodeme, prosodic wortyl in
addition to them — syllables and phonemes.

The constituents are hierarchically sorted frompheent
ones down to their children. Each of them containe or
more child elements. For example every phonemedstan
somewhere in a syllable and each syllable contaire or
more phonemes; a syllable stands in a prosodic waddeach
prosodic word contains one or more syllables.

Features in the third group have their values edrivom
the “length” of a prosodic sentence constituent tire
phoneme token context. This length is determinedefich
constituent by the number of its child constituelftise
number of phonemes in a syllable, syllables in aspdic
word, etc.).

The fourth group consists of features which indictite
position of a child constituent within its pareminstituent in
the phoneme token context — from the beginningfeord the
end of the parent constituent (the numeric reptasen is
used). Again, not just the position of the constituwithin its
immediate parent is used, but the positions in whm®le
parent hierarchy are taken into account as well.

The last group of features is similar to the presi@ne
with the difference that the values are not repriesk by
numbers, but positions are categorised into thessilpilities:
e FIRST/LAST - the child is positioned within its pate

as the first/last one (from beginning)
e MIDDLE - in other cases

5.3. Training process

The duration model training has been carried outguthe
wagon CART building program, a part of the Edinburgh
Speech Tools Library. Root mean squared error (RMBid)
correlation coefficient (CORRC) values, presented ia th
evaluation further in this paper, have been theeefomputed
by wagon

Since our segmented speech data contain more than
400,000 phoneme tokens, there are enough occusresfce
each phoneme type and thus we have decided to train
individual regression tree for each phoneme type.

The first 80 percent of sentences from the wholpus
have formed a training set and the rest of the thea has
been used for testing.

5.4. Experiments

Several training and evaluation experiments haes larried
out. The very first training experiments used osdyne of the
features from the groups described in Section B®vever,
due to poor results the feature set has then bdended to
the final number of 172 features.

As described in the text above, an independent foee
each phoneme type is used, therefore the phonemnagiatu
estimator is built as a composition of all indivaduegression
trees where the root (i.e. first) questions is altlbe phoneme
type. After that the algorithm continues in a staldway.

In one of the training experiments the featuresetamn
phoneme classes were excluded. However, this waljave
reached too high values of RMSE and CORRC (see Table 1)
and thus the approach had to be improved. Theaoexile of
experiments were characterised by leaving out gaufes
based on the position and then also on the cassgbri
position because of our hypothesis these featusesteongly
correlated. The results of these two experimentse wery
similar and — most importantly — worse than without
excluding any features.

The next step consisted in adding the featuresdbase
neighbour phoneme type and because this way we have
achieved better results, we have expanded theréeagt to
the full form described hereinbefore. The resuttsieved by
such classifier and feature configurations evehtuaached
the applicable level and are comparable to reqrisented
by other reports [9], [10], [11].

Since our speech corpus segmentation is based on a
statistical approach (HMM) and not conducted by aom
experts, it sometimes can happen that segment baesdre
placed relatively far from the position where thghould be.
To prevent these errors from negatively influengegmental
duration estimation we have tried to eliminate theom the
training data by excluding phoneme tokens withigtially
improbable duration. We have experimentally sets thi
statistical relevance so that only phoneme tokernth w
duration between 5 and 95 percent fractile (comptdeeach
phoneme type independently) have been included timéo
training data (sort of a “fractile pruning”). Thigay we have
achieved the best results in terms of the value3MSE and
CORRC.

We have also performed calculation of RMSE and
CORRC for a “dummy” duration estimator previously uged
our system which gives each phoneme token theHezgal
to the average length of the respective phoneme typ
computed from the training data (i.e. actually retireator
because each occurrence of a certain phoneme Bgpehk
same length). The results of this experiment aréequ
important and illustrative since they give an idefathe
theoretically lowest acceptable classifier perfatioe They
are presented in the Table 1 as well.



5.5. Evaluation

The first aspect of evaluation of the phoneme dumat
estimator is mathematical (or rather quantitatiR)yISE and
correlation coefficient values of the previouslysdebed
approaches are presented in the following table.

Approach RMSE CORRC
“dummy” estimator 24,47 0,85
excl. neighbour token classes 28,39 0,77
all features 22,56 0,75
all features — fractile pruning 18,89 0,92

Table 1: Duration model performance assessment

In comparison with results reported by other stsithiased
on CART (see the Table 2), our experiments have caume
slightly better (as for RMSE and CORRC). One cannotgudg
(concerning current research and evaluation metbggand
techniques) whether this is a language or even kspea
dependent phenomenon, or our set of features pesfozally
better (the influence of the language is indubé&abk.g. more
conservative duration behaviour in the Czech languiag
comparison with English). However, our model idl sidt in
its final version and we will continue to analybe tresults in
more detail.

Language [source] RMSE CORRC
German [9] 22,71 0,83
English [10] (voicdja) 21,00 0,78
English [10] (voiceaijs) 20,00 0,80
English [10] (voiceerm) 24,00 0,82
Korean [11] 26,48 0,73
Czech [7] 20,30 0,79

Czech — this paper 18,89 0,92

Table 2: Results comparison with other studies

The second, for our work actually more importargess
of the evaluation is overall quality of producednthetic
speech. We have not yet carried out formal int&jestiive
listening tests which quantitatively represent pptional
difference between the baseline “dummy” estimatwd the
evaluated one. However, according to informal judeget
based on listening to synthesised sentences our CART
estimator with all features and fractile pruningfpems same
or better than the baseline technique.

6. Conclusion

The research concerning FO modelling is currerdlus$ing
mainly on the issues connected with prosodic hommynyVe
have been able to prove that the current versi@ymthesised
intonation is very well assessed and we expect filrdher
improvement of prosodic structure parsing bringsniore
naturalness, especially in the field of semantibetence of
the synthetic speech. The presented approach iaticir
estimation has also performed well in our case fandre
work in this area will involve mainly more preciperceptual
evaluation and also accuracy improving.
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