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Preface

If you read this page, you probably already have an idea of what this book
is about. To see whether your idea is right, you should probably start to
read its chapters (or at least table of contents) because this preface cagoro-
vide you merely with somehow empty phrases such as \interdiscipfiary and
philosophical aspects of arti cial intelligence”, \deep-rooted ideas ofAl", or
\controversies of Al". And this preface indeed does not want to provide you
with any empty phrases.

This preface wants to be a way in which | can express my deep gratituel to
everyone who made the conference \Beyond Al: Arti cial Dreams" possibk.
It means that my great thanks go to a number of people who most probably
already know it even though their names are not listed here. Yet thereare
couple of people who were not only incredibly helpful in all organisatioal
issues, but without whose support on so many di erent levels the coference
would not happen at all: Eva Zckow, Radek Schuster, Pavel Ircing and
Michal Pobk.

Pilsen, October 2012 Jan Romportl
Organising Committee Chair
BAI 2012
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Humean Machine: When Desires Are in
Charge

Ivo Pezlar

Faculty of Arts, Masaryk University, Brno, Czech Republic
pezlar@phil.muni.cz

Abstract.  Itis already broadly agreed upon, although not yet deeply
studied, that motivational relations such as desires and goals should
play important role in devising arti cial agents. In this paper we pro-
pose di erent approach to modeling desire: instead of embedding de-
sire into the reasoning mechanism, we insert reason into the desiing
mechanism. In addition new distinction between desires and dummy-
desires is introduced.

Keywords: desires, dummy-desires, motivational attitudes, formal
models of desire, humean machine

1 Introduction

Al was born as goal-oriented, problem-solving discipline and having a goal
alone was seen as su cient reason for performing an action. In other words,
goals themselves were seen not only as a cause, but also as a purpose ofadert
action: no di erence was perceived between having a goal and desiigna goal.

For many tasks this simplifying approach to problem-solving works jug
ne. It would be hardly useful to have autonomously desiring toasterstoast-
ing only when they nd it appropriate to do so. But tasks like toasting ar e
relatively straightforward and what's more important we have already gu red
out how to do them. However, there are many other and much more compli-
cated problems we don't know how to solve yet and ideally we would likeAl
to help us and assist us in coming up with the solutions.

| don't think I'm saying something wildly controversial or novel w hen |
say that what is essential (at least for humans) for formulating a winning
strategy (i.e., devising a plan that will achieve desired goal) is a dgire to win.
Put di erently, rst we have to want to nd a solution to nd a solut ion.

At rst, it might not seem so signi cant (things get sometimes discovered
by \accident", but then again it is usually during some other problem-solving
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process), but you can hardly come up with a solution to a problem you dort'
want to solve at all.

But this all puts machines in awkward positions: on one hand we want
them to solve problems as we do, but on the other hand we strip them from
our main aid in problem-solving, i.e., the desire to see it done or sohk

It's not uncommon that we view our desires rather as weaknesses or obsta-
cles during the problem-solving process { as something which raér stands in
our way then helps (\l want to go out and have some fun with friends, | don't
want to sit home alone trying to prove this theorem any more.") { but what if
it is the desire that is essential in creative and autonomous problem<ving as
hinted before? Put another way, by depriving machines of desireswe might
willingly cripple their problem-solving capabilities.

To sum it up, we put forward the following idea that having a certain goal
is not enough for e ective formulation of successful strategy: it is alsacrucial
that the agent (human or arti cial) wants to achieve that goal! Simply put,
we see desire as a key trigger for problem-solving process.

2 Desires and Dummy-Desires

What has been said so far is nothing really new under the sun. Desire ahits
in uence on our actions is topic as old as philosophy itself and even taking
desires into consideration in Al has been done before. There is of coershe
well-known and studied BDI theory [1] and its extended reincarnatons (e.g.,
BDICTL [2], LORA [3] and many others), but they all perpetuate certain
viewpoint that might limit creating strong Al.

We are talking about desires being handled just as any other part of the
reasoning process { being inserted into the reasoning procedurgwhile in
reality it seems rather the other way around. In other words, many try to
subsume desires into the reasoning mechanism, even though theyese to
be stand-alone: we don't reason with our desires; desires control, ogee,

1 I'm deliberately avoiding here the question of machine consciousness, because I'm
not convinced that it is necessary for desiring. Or at least not i n the way that this
paper is concerned. Of course, in the end it might turn out that co nsciousness is
indeed essential for the study of desire, but until then | think t here is no need to
willingly limit our options with this yet to be resolved premis e.

2 In this paper we will not be distinguishing between desires and motivations: when
we are desiring something we are also motivated to achieve it andand vice versa.
Of course, this supposition is far from being unproblematic, buti t's not signi cant
for our discussion here.
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supervise and set to motion the whole reasoning processAnd this is the
position to which we will subscribe here.

Acceptance of this thesis leads to re-evaluation of BDI and similar theaes:
what they reason with cannot be desires any more, but rather their mere
representations, which we may calldummy-desires

By dummy-desires we mean pieces of information that share the content
with \genuine" desires, but are lacking \the pull" that de nes true desires,
i.e., the drive that motivates us towards action. These pseudo desgs carry
over the information of what is desired, but lack the ability to trigger the
action towards the desired. This power is reserved for true desas only (and
which are in return inert towards the whole reasoning process whit employs
dummy-desires).

So what do we mean by true desires? True desire are simply those des
that cannot be reasoned with and which are capable of producing action.
To put it di erently, whether something is to be considered as a true desire
depends solely on its detachment from reasoning process and simultaously
on its ability to trigger an action. *

This new distinction between desires and dummy-desires can elqn quite
easily why is it possible to desire premises of some argument, withddesiring
their logical consequence. The answer is: because what comes into ylan
reasoning process are not really desires, but just their \stunt doultes" for
reasoning. Whatever happens to them does not e ect the original deses
upon which they were shaped. In other words, we use dummy-desirde test
outcomes of our real desires without actually committing to them.

For example: let's say | posses desirgs and : g and | want to check their
consistency (desirer). After some time | come to the conclusion thatp! q.
Now it seems that | have three options: discard desirg, : g or desirer. That's
the rational conclusion. But the fact is | don't have to discard any of those.
I might simply ignore the whole argument and keep on desiringp, : g and r.
Why? Because the rational argument didn't have any action-driving weght
behind it. And why is that? Because what was used was not really desires
but their representations for reasoning which | call dummy-desies. Of course,
you could accuse me of being inconsistent in my desires (and rightlyo$), but
that won't change anything about them.

3 Recall Plato's well-known allusion in Phaedrus with chariot a s a reason and two
\desire" horses pulling it forward, i.e., putting it into motion.

4 We are being here purposefully vague about the nature of desires thenselves, so
that we don't have to commit to some particular philosophical or psychological
conception.
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In other words, we cannot reason with our desires (e.g., | can desire not
to reason at all). But what we can do is to reason with their \empty", hollow
representations (i.e., dummy-desires), which we use in our arguemts. E.qg., if
it is 2 AM and | have a craving for a steak, | might come to the conclusion
that it is not the best idea to eat one pound of grilled meat just before skep.
So | decide not to eat it. But that doesn't mean | got rid of the desire to eat
a steak. | just acted on stronger desire \to act rationally" or \to live healt hy"
etc.

But do we really need this distinction? Couldn't be the examples alove
explained e.g., in terms of competing and con icting desires: in tle sense that
my desire to be healthy triumphs over my desire for a steak, therfore | choose
not to eat a steak? Not really, because once we put this dilemma into th
argument form it's obvious that | might still opt to ignore it and eat that
steak after all.

The contrast between desires and dummy-desires cannot be transladanto
matter of competing desires. The same goes for reducing it into othedistinc-
tions such as e.g., rst-order and second-order desires, goals and subgqaitc.
Dummy-desires are not weaker versions of desires; dummy-desirage rather
\names" for real desires which are then used in reasoning.

To put it di erently, the distinction between desires and dumm y-desires is
not one of intensity (stronger/weaker, higher/lower, long-term/short-t erm...),
but of quality: the former has di erent roles and properties than the | atter.

The key thing to keep in mind is that the main purpose of this distinction
is to help us explain our somewhat paradoxical reasoning behaviour: on one
hand we are de nitely reasoning with our desires, but on the other handwe
don't necessarily feel any pull to obey the outcomes.

To summarize: we do not reason with our desires (e.g., as BDI does), ragr
desires control our reason. Or as Hume [4] puts it:

Reason is, and ought only to be the slave of the passions, and can never
pretend to any other o ce than to serve and obey them. (...) Since
reason alone can never produce any action, or give rise to volition, |
infer, that the same faculty is as incapable of preventing volition, or
of disputing the preference with any passion or emotior.

So desires are not slaves of the reason (or in case of BDI of planning and
believing), but more plausibly the opposite is true. So maybe we sbuld no
try to incorporate desires into reasoning process, but rather devep desiring
process and try to include reasoning process in it.

® See Hume, D.: A Treatise of Human Nature. pp. 414{415. (Book Il, S ection IlI).
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The main idea can be in a nutshell captured in what we shall calhumean
machineg, i.e., machine where desires have the sovereignty over reasonigF
1):

Dummy-desire

Desire engin <

\’ Reasoning engit
Action

Environmen

A 4

Fig.1. Scheme of humean machine

It is important to note that the desire engine should have a \kill swit ch"
over the reasoning process, so it can jump over it right to perforrmg an
action. In other words, there needs to be a desire to act rationally to enploy
the reasoning engine in the rst place. Shortly put, it is the desire engine
alone that triggers the reasoning engine.

Once we do this \humean turn", i.e., once we let desires control reasgn
it should be obvious that there has to be two way connection between dgre
engine and reasoning engine: we have (most of the time) desire to act ianally
and be considered rational and in order to do that we rst have to knowwhat
is the rational thing to do. And to nd out that is the role of the reasoning
engine.

It is this bidirectional connection that enables us to take into accoun our
desires while reasoning. But it is important to remember that what we are
reasoning with are not strictly speaking desires, but only their reections, i.e.,
dummy-desires, which cannot make us move, to put it bluntly.

This desire/dummy-desire dichotomy helps us to explain why we dot
always act rationally (or even morally for that matter). More speci cally,
why cogent and rational arguments, while we fully acknowledge their valiity,
do not need to have any persuasive power over us (even if we add classlike
\I want to act rationally"), e.g., there is nothing wrong with the followi ng
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statement: \I know | should do it and it's the rational thing to do and | w ant
to be rational, but | still don't want to do it." That's all because what w e
are reasoning with are not our actual desires, but only their represergtions
for reasoning, i.e., dummy-desires. Generally put, no rational argumet alone
could ever trigger an action on its own accord.

But how should we represent these desires and dummy-desires anhat
should be the inner workings of such a desire engine? In last sectiontrly to
address these questions.

3 Meet A.L.I.C.E.

First of all, we introduce our humean machine Autonomously Longing & In-
telligently Computing Engine or A.L.I.C.E. for short. For representation of
desires we will use modal propositional logic K which means that we will
treat desire similarly as epistemic logic treats belief ([5], [6]). h other words,
we assume that desires have propositional content.

We will read the modal formula p as \agent desiresp” or \agent desires
that p". Formally, the language L of modal desire logic is non-empty, countable
set of atomic formulae Atom = fp;q;::g and formulae de ned as follows:

=pj o j _ j o~ j i 8 j 4

where symbol4 will be used instead of to emphasize the fact that we
are dealing here with desire, not necessity (or knowledge).
Next we add to any full axiomatization of propositional logic the following:

Axiom 1: 4 !
Axiom 2: 4 (! )y (4 4 )
Inference rule 1: from and ! infer

Inference rule 2: from infer 4
Semantics: structureM for languagel is tuple hW; R; Vi such that

W is nonempty set of truth worlds,
R wW W

8 It's important to note that the manner in which we choose to repre sent desires
(and dummy-desires) in A.L.I.C.E. is not really a key issue here and our choice of
modal logic was motivated mainly by its simplicity and famili arity, which makes
it well-suited system for basic exposition of the topic and al so very solid starting
point for further discussion (e.g., which axioms are most appropri ate and so on).



Humean Machine: When Desires Are in Charge 7

V : W Atom ! f Goal;,Not-Goal g is distribution function on atomic
formulas,

Satisfaction relation = is de ned as follows:

(M;w) F pi V(w)(p) = Goal

Miw) F o i (Miw) 6

Mw)F ~ i (Mw)FE  and (M;w) F

M;w)E 4 i (M;wy)F forall w, 2 W such that (w;w;) 2 R

So we say that agent desires (written 4 ) if and only if is her goal in
all worlds she considers as possible (assuming her knowledge baseystéhe
same across all the worlds).

The rationale behind this formalization is that desire drives us towards
certain goals no matter what are the circumstances: if we want something,
we want it even if it is impossible (or highly improbable). Of course, our
desires might change accordingly to what we know, which is captured byhe
requirement of constant knowledge base throughout the worlds.

It should be obvious that we are talking here about very strong desires.
E.qg., | desire drinking water (i.e., agent desires such a state of a as in which
she is drinking water) if and only if | can't imagine world (with what | n ow
know) in which it is not my goal to drink water.

Notice that so far we have taken into account only true desires, while
omitting dummy-desires entirely. To amend this we need to introduce another
modal system (basically duplicate of the one we have already introdued) and
add metalanguage labels to its formulae to distinguish it from the earlier
system for true desires. So in the end we would havp for desires (domain of
desire engine) andp® for dummy-desires (domain of reasoning engine), where
\ %" is the metalanguage label.

The idea is that even if a conclusion of certain argument is for us to want
p° (e.g., \I desire to eat a steak" is in our belief/lknowledge base), we ed up
doing p° if and only if we have alsop in our desire base.

So aside from desiring engine (producing) and reasoning engine (produc-
ing p% we also need third component which would check if we really want to
do what our reason tells us to do. In this respect, desires might be cadered
subordinated to even higher reasoning: some sort of meta-reasoning whic
compares matches of desires with dummy-desires, but this desption would
be slightly misleading, because our third component is not so much engadén
reasoning as in evaluating and checking desires and dummy-desireS8o more
tting name would be meta-desiring, i.e., desiring that we act upon desires
that are rational.
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This concept allows us in very rudimentary manner model desire-
dependent reasoning, i.e., we will do what we think is rational pY if and
only if there is match betweenp and p° i.e., if we also want to dop in the
rst place.

Of course, most of the questions are still ahead. What needs to be done
next is e.g., devising the mechanism for converting the full-bloded desires into
dummy-desires and then sending them to the reasoning engine. Thiis only
the sketch at best. However, our task is somewhat simpli ed by the fatthat
that much of the research on desires has been already done (e.g., withthe
scope of decision theories). We just have to examine those theories éitook
for something that might be fruitful and easy to implement for Al purposes:
we don't have to start from scratch.

Final summary: We focus too much on the \problem-solving" aspect of
Al, while neglecting the desires driving the problem-solving iself. We need
systematic, formal and rigorous account of internal motivation which has fuly
under control the reasoning mechanism. McCarthy and Hayes were backi
1969 hypothesizing and \organ of will"* [7], now it might be the right time to
do the very same with \organ of desire".

And just to reiterate and perhaps clarify, our goal is to allow machines to
have the same starting position as we seemingly have during problerselving
procedure, i.e., having reasoning process that is governed by siees. Of course,
the desires themselves can (and should) be \punched in" by designeThat is
not what is principal here, what is important is the way in which the m achine
will work these desires (pre-set or not). What is then the relation ketween
reason and desire? Reasoning helps us to (re)evaluate our desires e what
is rational and what is not) and thus in uence our actions and behaviour (if
we desire to be rational), but what it does not do is directly controlling our
actions.
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From Gobble to Zen
The Quest for Truly Intelligent Software and
the Monte Carlo Revolution in Go
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Abstract.  After the success of chess programming, culminating in
Deep Blue, many game programers and advocates of Arti cial Intell i-
gence thought that the Asian game of Go would provide a new fruitfu |
eld for research. It seemed that the game was too complex to be mas-
tered with anything but new methods mimicking human intellig ence.
In the end, though, a breakthrough came from applying statistica |
methods.

Keywords: Go game, Monte Carlo, UCT, chess

1 The Turk

In 1769 an amazing machine was introduced to the world, the Automaton
Chess Player, known to us now as the Mechanical Turk. For more than gihty
years the Turk was exhibited all over Europe and in the United States aul
showed his ability to play chess { winning most of his games. He is saitb
have played against Frederick the Great, Napoleon and Benjamin Franklin

In retrospect it is hard to believe that the Turk could have been taken
seriously at all. After all how could one imagine a machine being construed
that was able to recognize a chess position, to move the chess gures and
to win against even quite strong players at a time when the most advanas
technological breakthrough was the mechanical clock and certain music au-
tomatons. It would take nearly two hundred years more and the industrial
and computer revolution to have some real arti cial chess playing deices.

But although some people suspected a hoax from the beginning, it seems
that many, if not most of the people, believed that a chess playing autoraton
was possible. In 1836 Edgar Allen Poe tried to explain the \modus operandi"
of the Turk in an essay calledMaelzel's Chess-PlayerHe states that one could
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nd \men of mechanical genius, of great general acuteness, and discrimitie
understanding, who make no scruple in announcing the Automaton a pure
machine, unconnected with human agency..." [1]

Well before the advent of Arti cial Intelligence the history of the Tu rk
teaches an important lesson. People are likely to exaggerate the ability of
their engineers and maybe to underestimate the complexity of cegin human
endeavors.

Poe, after mentioning a couple of real automatons, like the famous duck
of Vaucanson, goes on to compare the Turk with the calculating machine
of Charles Babbage. He rightly claims that a chess playing machine, were
it real, would be far superior to a calculator since \arithmetical or algebraic
calculations are, from their very nature, xed and determinate..." An d so the
results \have dependence upon nothing [...] but the data originaly given". In
chess, on the contrary, no move follows necessarily from the previgu After
a few moves no step is certain. And even granted, Poe says, that themoves
of the automaton were in themselves determinate they would be intempted
and disarranged by the indeterminate will of its antagonist. He continues
with some technical objections to the mechanical Turk and then adds a &ry
strange argument: \The Automaton does not always win the game. Were the
machine a pure machine this would not be the case { it would always wir.
The di culty of constructing a machine that wins all games is not \in the
least degree greater [...] than that of making it beat a single game". This
might be dubbed the Poe fallacy.

If the willingness of 18th century people to believe in the possibity of
highly complex automatons is somewhat surprising, it should be rememlyed
that the belief in a purely mechanistic and thus deterministic universe dates
back at least another 150 years to the work of Galileo and to that of William
Harvey, who following Fabricius, discovered blood circulation andshowed that
the heart was just a pumping machine and to Descartes who was prepared
to announce that all animals were in fact automatons. Descartes, it has been
argued, was in uenced by the technological wonder of his time, the Royal
Gardens created by the Francini Brothers, with their hydraulic mechanical
organ and mechanical singing birds [2].

In the dualistic tradition it is the hallmark of the human agent to act in
a non-determinate way, thus creating a new branch in the tree of lié. This
ability was what Poe denied the Automaton.

When the rst computers were developed it seemed logical to createhess
playing programs. A program to beat an expert human player would surely
have capacities that would go far beyond arithmetical calculations. It wodd
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need to have what would later be called Arti cial Intelligence. It wou Id need
to be able to make choices based on the evaluation of a complex position.

2 The Game of Go

The story of the development of chess playing programs is well knowrzrom
the humble beginning of Turing's theoretical considerations to DeepBlue it
took less than 50 years.

Creating a program that is able to perform at world championship-level is
surely an astonishing accomplishment, but at the same time there are gwe
doubts whether one could call a chess program in any sense intelligent.

Of course, one could judge the performance simply by the results, and
then the program must be regarded as intelligent or more intelligent than
the players it beats. And it was known by Turing that any goal in computer
science that is reached would be declared trivial afterwards, folloed by the
examples of feats that computers will never be able to accomplish. Bustill,
the suspicion that high class chess programs are basically only sophistied
number crunchers, not principally di erent from the calculating machine of
Babbage, remains a strong one.

No one really knows exactly how human players judge positions and what
processes go on that result in the decision to play one particular ma, but
it is surely totally di erent from the way the computer works. And, i f truly
intelligent behavior is de ned as behavior similar to that of humans, chess
programs are not intelligent.

Maybe then, chess is just not complex enough, to really require tra in-
telligence. Fortunately, there is one game that had the reputation of beng
so deep that it could never be played successfully by game tree analg, the
game of Go.

This has given rise to the intriguing notion that Go is in fact the classi-
cal Al problem that chess turned out not to be, that solving Go will in
fact require approaches which successfully emulate fundamental pr
cesses of the human mind, and the development of these approaches
may both give us new insight in to human thought processes and lead
to the discovery of new algorithms applicable to problems ranging far
beyond Go itself. [3]

And indeed it has been said that Go has become the most exciting chal-
lenge for Al and can be regarded the nal frontier of computer game re-
search [4]. What is it then that makes Go special? Go, like chess, is avb



From Gobble to Zen 13

person, zero-sum, complete information game. But the board is larger and
a typical game takes about 250 moves (in Go a move is a ply, or what is a
half-move in chess).

The number of possible positions in chess are 19 in Go about 1070,
The whole game complexity can be calculated to be 3 in chess compared
to 10°7° in Go [5].

The number of possible games is not the main issue though, since even on
small boards, (9x9 is customary for beginners, humans as well as programs),
the game remains complex. The reason is that there is no simple evaluain of
a board position. In chess it is possible to weigh each gure on the board and
together with some relatively simple heuristic rules (a knight at the edge of
the board is worth less than in the centre) one can get a fairly accurate vale
of the position. In Go on the other hand it is sometimes not easy to decide
whether a move increases the value of a position for one side and very lear
to compare the relative virtues of two candidate moves.

3 The Rules

The rules of Go are very simple.

Preliminary Rule: Go is played on a 19x19 board with black and white
stones. One player called Black takes the black stones one player cadl White
takes the white stones. Black starts and then both players play altenate
moves until both players agree that the game is over.

Principal rule of Go: A move can be played on any empty intersection of
the board (including edge and corner) and remains on the board unless all
adjacent points are taken by the opposite stone color.

Exception of the rule: A stone may not be placed on an intersection, if dl
adjacent points are taken by the opposite color. (Suicide Rule)

Exception of the exception: A stone may be placed on an intersection tht
is completely surrounded by enemy stones if the empty interse@n point is
the last empty adjacent point of this enemy stone { or a chain of enemy stoms,
where a chain is de ned as stones of one color where every stone has at feas
one adjacent neighboring stone. (Capture Rule)

Exception of the exception of the exception: A stone may be not be plaak
on an empty intersection, even if this takes the last free adjacent pait of
one enemy stone, if the stone that would be so captured has itself captad
exactly one stone with the previous move. (Ko rule)

Secondary Rule: The advantage of having the rst move is compensated
by a certain number of points (Komi) given to White. Large di erences in
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strength are compensated by a number of so called handicap stoned that are
placed at the beginning of the game on the board.

The object of the game is to put as many stones on the board as possible.

This is not the set of rules that you would nd in Go books. In the real
world there are Japanese and Chinese rules (and even New Zealand ruldisat
di er slightly and add certain nuances. Especially the last point, the object
of the game, would normally be de ned in a di erent way. The object really
is to surround as many empty points and capture as many enemy stones as
possible and the game ends when no meaningful moves are possible.

But implementing this set of rules is enough to create a Go-playingpro-
gram.

For a human player learning these rules is not nearly enough to undetand
the essence of the game. In practice, a novice at the beginning veryteh learns
certain concepts that really follow from the rules. Especially impotant is the
concept of a living group. A group lives, i.e. can never be captured, ift has
two eyes, he will learn. An eye is a point surrounded by neighboringtenes
of one color. (The concept of a living group follows from the suicide rulg
But sometimes a group can have a false eye and then it is dead. And really a
group does not need to have two eyes, it just must have the potentialo build
two eyes, if necessary, i.e. when it is attacked. Sometimes a groupdks alive
but is really dead, because within the group there is a \dead shape" of egmy
stones. And what exactly is a group? A group is a collection of single stones or
small chains positioned roughly in the same area of the board, in other words
what constitutes a group is a fuzzy concept. Only when it is really alve, it is
clear which stones belong to the group. So, the player decides what t@gard
as a group. He has to decide if a group is dead or alive, if it is weak or strong,
if it can be connected to some other group or if it has to live internally. The
player must learn to appraise the status of his own groups, but at the sara
time that of his opponent. And in the end he even has to learn how and
when to sacri ce a group. The player will learn to play \good shape" moves
and to avoid bad shapes. He will probably learn a couple of hundred de ned
sequences in the corner (callegosekis), sequences that are regarded to give
an equal result to both players, and any number of \proverbs" like \death lies
in the hane". He will learn the sometimes very subtle di erence between a
forcing move that strengthens the own position or creates some poterdal and
a move that really only strengthens the opponent. And very importantly, he
will have to learn the value of keeping the initiative, of leaving alocal ght to
play somewhere else rst. This is known in Go as keepingente as opposed
to gote
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It seems clear that a Go playing program must have access to the kind of
knowledge described here in one form or another. Some aspects of go knewl
edge are easy to implement. A program can reference a database with corner
sequences to pick goseki move. The same is true for good and bad shape
moves. In a local ght the correct sequence of moves to kill an enemgroup
or to make life for an attacked group might be reached by brute force tree
search. But some of the other concepts, like evaluating the status of a gup
or when to switch to a di erent part of the board are notoriously hard to pu t
into code.

The attempt to establish \expert systems" was made all the more di cu It
as a lot of knowledge is implicit and cannot easily be put into words much
less into code. For example the Go proverb \Play the important move rst,
then the big one" is often repeated but hard to appreciate.

There have been a number of di erent approaches to create a Go plagg
program [4], [5]. In theory the best idea seems to be to just implemdnthe
basic rules and let the program learn everything on its own. Some attemis
have been made in this direction but they did not go very far.

In practice, it seemed, that \Go programmers must observe human Go
players and mimic them." [6] And in the end it came down to the problem
of how a move is to be evaluated. To judge the merits of a move there se
to be only two ways, namely a direct evaluation based on heuristics or 4ull
board static evaluation after the move.

Direct evaluation is sometimes possible, e.g. when a move makes lifer
a big group. And sometimes one can hear commentaries such as: \White has
played only good moves, black on the other hand has played one dubious
move, therefore the position must be better for white." But certainly every
amateur player knows from experience the situation, where he thiks that he
has made the better overall moves, and still his position is worse thn that of
the opponent.

Because a full tree search is practically impossible in Go it was a natal
idea, to regard Go as a sum of local games. In a local situation it is much
easier to nd a good or even the best move. And this is how a human plagr
behaves. He will very often concentrate on one or two local positions, pk
a couple of candidate moves in that position \that suggest themselves", and
then try to falsify them. In the end the move is played for which the player
could not nd strong answers for his opponent. But in the context of game
programming, this introduces a new problem. Even if a local perfectmove
is found, then the resulting local position has to be compared to othelocal
positions. For example, it might be possible that there are two movespoth
ensuring life to two di erent groups in jeopardy, then it might be t he case
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that it is better to save the smaller group, if this group plays an active role in
the game and the other is of no strategic value. Of course this is only a sub
problem resulting from the main problem that no fast and reliable full static
evaluation of a board position was known.

It is no surprise then, that progress in computer Go was slow. At theend
of the 90s the best Go programs were said to be around 3rd kyu, which would
have been respectable if true. A beginner starts roughly as a 35th kyu ah
as he gets stronger the kyu grade steps down until rst kyu is reachedThen
the next step is rst dan and then the dan grading climbs up. Very strong
amateurs are 5th or 6th dan. The 3rd kyu rating was mainly for marketing
purposes. In a very famous game, played in 1998, Martin Maller played a 29
stones handicap game to one of the strongest programs at the time, \Many
Faces of Go", and won. (The game can be found in [4].) This would make the
program roughly 25th kyu or really just the strength of a beginner. Mdller is
a Go programmer himself and knows the weaknesses of programs, but even
taken this into consideration, programs could not have been much strongeas
10th kyu then. A fresh idea was needed to take computer Go forward.

4 Monte Carlo

In 1993 Bernd Bragmann presented a program called \Gobble" that intro-
duced a new principle to the world of Go programming that would eventtally
trigger the Monte Carlo revolution of Go [7]. Monte Carlo techniques had keen
used before in physics or in mathematics, for example to solve the treelling
salesman problem for practical purposes.

Applied to Go the basic idea is, that candidate moves are evaluated by
starting simulated games from the current position with this move andto play
random moves from there on, till the end of the game. For every considete
move hundreds and now many thousand random games per second are played
and the average score of the playouts is assigned to the move. Instead of
taking the actual result only the win or loss is counted in most Monte Carb
implementations these days.

If this leads to good results, this approach has two obvious advantages to
the standard way of Go programming. It practically needs no Go knowledge
and since the counting at the end of game is trivial, it eliminates the reed
to evaluate a current position. The only real Go knowledge needed, ishat
the program needs to know that in playing the random games one should not
Il one's own eyes. But it would be very easy to add a rule that forbids such
virtual suicide.
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Bragmann admitted that the idea might appear ridiculous. But he showed
that in his implementation Gobble could play at 25th kyu on a 9x9 board,
which was very impressive for a program without knowledge. And even iit is
hard to accept that random moves could give an indication of a good actual
move to play, it does make sense that starting random games with the st
move in the centre of a 9x9 board leads more often to a win, than starting
somewhere on the rst line.

It did take a couple of years for the idea to really ignite. Ten years late
Bouzy and Helmstetter take up the idea and add some re nements [8]. For
one thing Bugmann had used not only the result of games that started at
a particular move but also the value of the move if it was used in other
simulations provided it was played the rst time. The rationale for t his was
the observation that some moves are good no matter when they are played.
Also, the moves played in a random game were not completely random but
played with a probability that was dependent of their current value. This was
to ensure that good moves had a better chance of being played. And some
algorithm also controlled the probability that a move could be played out of
order.

The value of the all-moves-at- rst-heuristic was questioned and irstead
progressive pruning was introduced, where a move after a minimd00 random
games would be pruned, if it was inferior to another move. What is imporant
though, is that the modi cations were all in the realm of statistics.

It would take another statistical algorithm, though to help the Monte
Carlo method in Go to its breakthrough. In 2006 the UCT algorithm was
suggested for Go playing programs [9]. UCT means Upper Con dence Bounds
applied to Trees. UCB was rst used to solve the so called multiarmedbandit
problem. It means that a formula is used that will guarantee that a move
chosen for sampling will be either one that has already a good value and losk
promising or a move that has not been su ciently explored. This \expl oitation
vs. exploration" principle was used in the program \Mogo", which won the
2007 Computer Go Olympiad and was the rst program to beat a human
professional player at 9x9 Go [10]. Today all leading Go programs use the
Monte Carlo/UCT method. The best probably being \Zen" which has reached
a 6th dan rating at 19x 19 on the popular KGS Go Server.

Some other improvements of statistical evaluation have been added lk
RAVE (Rapid Action Value Estimation), which allows to share information
between similar positions (it is related to Biagmann's all moves as rst heuris-
tic) and some caching techniques. And, of course, based on the solid Mant
Carlo platform even some Go knowledge is how used to prune or bias mave
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Even Many Faces of Go has reached 2nd dan, combining now its traditional
Go knowledge with the Monte Carlo Tree Search.

Within six years, since 2006, the situation has changed dramatically. Be-
fore then every moderately serious Go player, say half of all club plyers, could
beat any Go program without di culty. Today maybe less than 1 percent of
all amateur players can beat the strongest Go programs. This is the restibf
the Monte Carlo revolution in Go.

5 Conclusion

From the viewpoint of Arti cial Intelligence the success of the recent develop-
ment in Go programming obviously, and maybe sadly, repeats the historyof
the research in chess programming. In fact the way strong Go programs work
now, does not even remotely resemble an emulation of \fundamental prasses
of the human mind". A chess program does what a human brain can at least
aim at: consider as many follow up moves as possible to a candidate move
and then evaluate the resulting position. Nothing like this could be sid for
Monte Carlo Go.

Bruno Bouzy who had spent many years developing a Go program, \In-
digo", with standard Go heuristics and was then one of the godfathers of
Monte Carlo Go summarizes and ends his activity with this remark:

In 2006 and 2007, with the birth of the Monte-Carlo Tree Search tech-
nique, computer go is now in the right direction, like computer Chess
was with alfa-beta. The future improvements in computer go depend
on parallelisation and UCT re nements. The way from knowledge to
Monte-Carlo is succeeded. Consequently, | suspend Indigo dewg-
ment for an undetermined period. [11]

This may be a bit of an overstatement since Go knowledge does play a
role, but one can sympathize with his attitude.

If Go like chess failed to meet the expectations of Arti cial Intelligence it
might be a good idea to de ne intelligence other than in referenced a human
being.

One of the pioneers of computer Go, Allan Scar , came up with this de -
nition:

The degree of scope for appropriate behavior of an agent for any given
set of knowledge and any given amount of processing used by that
agent. [12]
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The less knowledge is needed the more intelligent an agent is. In thire-
spect Go programs are doing ne, but of course they need a lot of \processg",
which according to this de nition is a mark of the unintelligent.

Jos Capablanca, the chess champion, is supposed to have answered the
question how many moves he would look ahead thus: \Only one, but it's
always the right one." A program will never accomplish this, but then Capa-
planca's mastery in chess was certainly the result of a lot of work and acqred
knowledge. And just because a lot of the \pruning" and \biasing" happens
unconsciously, it does not mean that not a lot of processing of some kindsi
going on.

And even if the best Go programs today can beat strong amateurs, there
is still a long way to go to reach the level of top professional Go playes. It
may very well be the case that Monte Carlo Go leads to a dead end. Perhap
entirely new concepts have to be developed to really master the gamé might
be the case that the human way is after all the most e ective. But, | at least
rather doubt it.

For one thing, intelligence is not the only aspect that is needed to redt
top level, and maybe not even the most important. It is no coincidencethat
practically all professional players learnt the game in very early youth and
most did little else than studying Go. In this respect they resenble prodigies
of, for example, piano playing. One of the best Go books is calleessons in
the Fundamentals of Goby Toshiro Kageyama. It is the grasping of funda-
mentals, Kageyama says and demonstrates, that di erentiates the profssional
from the amateur (not only in Go). But the ability to grasp fundamentals,
in contrast to appreciating them intellectually is something that i s very hard
if not impossible for an adult. And the reason is that active intelligence and
a conscious desire to understand is an obstacle to absorb certain congsp
The human way for top achievements in Go, as well as in the arts, in sports
and the sciences is a very subtle interaction between rock soliduhdamen-
tal knowledge outsourced into the realms of the unconscious and intefent,
creative, conscious application of this knowledge to speci c circuratances.

This does not mean that it is the best way. The way human beings think
and act is not something that is in principle denied to arti cial bein gs. It
might be possible to emulate the working relationship between consousness
and subconsciousness, and this would be very instructive, but | dmot think
that it is necessary in order to create arti cial solutions for any task that
seems at this moment to be restricted to the problem solving powerf a
human being.

To 19th century people it seemed that a machine, by de nition, could rot
create something new, since it lacked free will and could only do whatas
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\built in". Today, it is not easy for a programmer, to even understand th e
problem. Any complex program will act in unforeseeable ways. This happes
because of bugs, but just as easily by design if some random \decisions" are
implemented. And in the same way as the program can act, as if it were free
it will act as if intelligent. For practical purposes there is no di e rence.

It might still be worthwhile to try to emulate human thinking, butt here is
no doubt that, as long as the quest for truly intelligent software comes p with
highly original unexpected pseudo solutions like Monte Carlo Tree Sarch, we
should not give up the quest.
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Abstract.  Modeling behavior of intelligent agents and its a ecting
parameters is a very challenging aspect of research in the eld of Ar-
ti cial Intelligence. But, if performed correctly, we can improve the
abilities of arti cial agents and we can build social agents w hich can
speak, think and behave like us. Many other models of behavior for
intelligent agents have been proposed but their complexity m akes it
di cult to validate them against the real human decisions. In  this pa-
per a novel behavioral model is proposed which has a simple stru¢ure
and also includes the e ect of emotions as a major a ecting para meter
to the decision making process.

Keywords: intelligent agent, behavior modeling, decision making,
emotion modeling

1 Introduction

Behavior modeling for intelligent agents is a new research aspect inontrol,

computer science, sociology, psychiatry, psychology, economy, midty, etc.
The vast application eld of this aspect varies from human-like robots, pet
robots, and human behavior simulations in severe situations to builthg intelli-

gent residence environments, intelligent abnormal behavior detd@on systems
and human-robot interaction systems. Decision making behavior of intigent

agents is studied by many researchers and the result of these reseles is pro-
posed as various behavioral models. Lee et al. [1] categorized these madiel
3 major approaches:

1. Economical approach
2. Psychological approach
3. Synthetic engineering-based approach
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First, models in the economical approach have concrete foundation, molst
based on the assumption that decision makers are rational [2, 3]. However, one
limitation is their inability to represent human cognitive natures . To overcome
this limitation, models in the psychological approach (second category) ave
been proposed [4{6]. While they consider human cognitive natures exgitly,
they mainly focus on the human behaviors under simpli ed and controled lab-
oratory environments. Decision Field Theory (DFT) is a famous model ofthis
category. Finally, the synthetic engineering-based approaches empia num-
ber of engineering methodologies and technologies to help reversegameer
and represent human behaviors in complex and realistic environmest[7{13].
The human decision-making models in this category consist of the propeen-
gineering techniques employed for each sub-module. BDI, SOAR andCT-R
are widespread known models of this category. However, the compleyitof
such comprehensive models makes it dicult to validate them against the
real human decisions [1].

In this paper a novel behavioral model is proposed which involves aeti-
sion making strategy and the agent's emotions as the most important factor
in decision making process. Another novelty of this paper is that it dilizes a
simple structure that any other a ecting parameters such as agent's peson-
ality and memory can be augmented to in the future. The proposed model
was tested on some agents in a goal reaching scenario.

2 Proposed Model

2.1 Main Idea

All living intelligent agents are consciously or unconsciously optimiing their
lives. So every decision they make and every action they take is decfited
to this objective. Hence, we can conclude that decision making struare of
every living intelligent agent includes a dynamic multi-objective goal function
and an optimization structure. The goal function of every agent is specic
and di erent from the others' and it is because of the dierences in their
objectives, personalities and other characteristics. But they are sucturally

similar and depend on the agent's emotions, feelings, morals, etc. Thaask of
the optimization structure is to optimize the goal function in the manner of
calculating the cost and benet of every possible alternative at the deision
making time and nally choose the best one which involves the most beat

and least cost. Meanwhile the moral, bodily and substantial characteritcs
and parameters like the agent's current emotional state interfere and aect
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this optimization process so that the agent may make di erent decisons in
the same situations.

2.2 Emotion Model

Emotions are a controversial topic and an important aspect of human in-
telligence and are shown to play a major role in decision making proas of
humans and some animals. Many scientists in the elds of psychology, phi
losophy and arti cial intelligence proposed various models of emotion. Mok
of the proposed models focus on reactional behavior of the intelligent age
However, through the history of emotion modeling, it has been shown that
agent's other moral, substantial and bodily characteristics such as meiry
and expertise, personality, intelligence and physical situations [ay a major
role in its decision making process too.

Ortony, Clore and Collins [14] proposed an emotion model, which is often
referred to as the OCC model. There are also di erent emotion moded pre-
sented from other researchers, such as Gomi [15], Kort [16], and Picard [17]
and the FLAME model by Seif EI-Nasr et al. [18]. Hidenori and Fukuda [19]
proposed their emotion space. Wang et al. [20] also proposed another emotion
space. Zhenlong and Xiaoxia [21] by combining the emotion space proposed
by Hidenori and Fukuda [19] and the one proposed by Wang et al. [20] and
based on the OCC model built their emotion space. Their emotion spacent
cludes four basic emotions Angry, Happy, Nervous and Relief. In this paper
we apply their emotion space.

According to OCC model, emotions are caused by an agent's evaluation
of an event. So, emotional state of an intelligent agent turns to a positive
state if triggered by a positive stimulus and to a negative state if triggered
by a negative one [22]. In the scenario of this paper the distance betwrdhe
agent and its enemy (known as Enemy Distance) and the distance betvem
the agent and its goal (known as Goal Distance) are stimuli. Goal Distance
causes symmetrical emotions Happiness and Anger and the Enemy distance
causes symmetrical emotions Nervousness and Relief. Fig. 1 illustas our
proposed circular emotion space of an intelligent agent.

2.3 Event Evaluation Fuzzy System (EEFS)

The task of Event Evaluation Fuzzy System (EEFS) is to map environmerial
stimuli into the agent's emotion space. This means EEFS determinesvhich
and how emotions are excited by events. This unit includes the fotwing parts:
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Fig. 1. Proposed emotion space of the intelligent agent

Input Variables.  Enemy Distance (ED) with 9 membership functions (UC!,
VC, C, AC, M, AF, F, VF and UF) illustrated in Fig. 2 and Goal Distance
(GD) with 9 membership functions (UC, VC, C, AC, M, AF, F, VF, and UF)
illustrated in Fig. 3. This type of fuzzy partitioning of input space al lows

Ultrapese-loseciose A ittleclose Medium Alittlecar  Far  Veryaitrh ar
1E ]

Fig. 2. Membership functions for input variable Enemy Distance

a slight nonlinear mapping of the input space to the output space. Thisis
because of the nonlinear nature of emotion arousal in di erent situations.

Output Variables. Emotional Intensity trajectories x and y in Cartesian
emotion space which both have 9 membership functions (UL, VL, L, AL, M,

1 U=Ultra,V=Very,A=A little,C=Close,F=Far,M=Medium,H=High ,L=Low
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Fig. 3. Membership functions for input variable Goal Distance

AH, H, VH and UH) equally partitioning the output space ranging from -1
to 1 that one of them is illustrated in Fig. 4.

uitra, frvoseny, ervouservoud ttieefvous Gaim A ithierellef Relier Very diletitraleller

-1 05 0.6 04 02 02z 04 06 08 1

Xo

Fig. 4. Membership functions for output variables x andy

Fuzzy Rule Base.  The rule base to manage the correlation between the
inputs and the outputs of the EEFS is shown in Table 1.

Vector Representation of Emotions. The output of the EEFS are emo-

tional intensity trajectories x and y in emotion space. So,
x=fxjx2<;"16 x6 1g (1)
y=1fyjy2<;"16y6 1g ()

Here these variables form a square emotion space in a Cartesian coordinatti.
For having a circle emotion space (like Fig. 1) we have to map these Cagsian
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Table 1. Fuzzy rule base of emotion model

Rule No. Goal Distance Enemy Distance y x

1 uc UF UH UH
2 VC VF VH VH
3 Cc F H H
4 AC AF AH AH
5 M M M M
6 AF AC AL AL
7 F C L L
8 VF \Ye VL VL
9 UF ucC UL UL

coordination to a circular coordination.
p
Xe = X! 1" 0:5y2 3

Ye = ys:p 1" 0:5x32 (4)
Where xs and ys represent Cartesian coordination andxcand y. represent
the new circular coordination representation. For simplicity we use x and y
instead ofx. and y.. On the other hand determining the type and the uniform
intensity of the emotion is too hard having just these two numbers So let us
de ne Emotion Vector e as follows:

e=[xy] (5)

In circular representation of emotions, emotion vector €) can also be repre-
sented by its Norm ( ) and its Angle ( ).

=Py ©)
_ 11,y
= tan 1(;) (7

Now we can simply de ne the intensity of emotions by the norm () and the
type by the angle () of emotion vector (). The correlation of the emotion
angle, basic emotion, emotion intensity and nal emotion is representedin
Table 2.

For example emotional statee = (0:5; 30 ) is located in the rst quadrant,
its intensity is 0.5, its angle is 30, so the corresponding emotion is Relief.
When the agent's norm of the emotion vector is less than 0.2 we assume that
its emotional state is Calm.
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Table 2. Correlation of the emotion angle, basic emotion, emotion inten sity and
nal emotion

Emotion Angle |Basic Emotion |[Emotion Intensity | Final Emotion
086 61 Very Happy
76 < 3 Happy 0:46 6 08 Happy
0:26 6 0:4 | A Little Happy
086 61 Very Nervous
6 < - Nervous 046 6 08 Nervous
0:26 6 0:4 |A Little Nervous
086 61 Very Angry
6 < Lo Angry 046 6 038 Angry
026 6 04 A Little Angry
086 61 Very Relief
-6 < 5 Relief 046 6 08 Relief
026 6 04 A Little Relief

3 Decision Making Strategy

Due to the structure of the eld, the agent has 9 alternatives to choo® between
that consist of 8 alternatives (A,B,C,D,E,F,G,H) for moving in 8 dire ctions
and one alternative to stay in its current coordination (X). Fig. 5 illu strates
these movement alternatives.

Fig.5. Agent's possible movement alternatives

For building the Decision Making structure, rst we need to den e a Goal
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Function to be maximized:
SERTARY (®)

Here r is the Goal Function, f, is the Reward Function and f is the Cost

Function and index i represents the number to the corresponding alternative
(X, A, B, C, D, E, F, G and H respectively). Reward Function determin es
the Reward of each alternative and the Cost function determines the cdsof

that alternative. The de nition of Reward Function in our sample scenario is

as follows:

= e + gy 9
Which g; is the enemy prevention factor andg. is the goal importance factor.
This de nition of reward function determines the agent approaches thegoal
and prevents the enemy. The factorse, and g. are dynamic control factors
that depend on the current emotional state of the intelligent agent and wil
be discussed in the next section.
For a suitable de nition of the cost function in our sample scenario, we reed
the de nition of the energy consumed by each alternative:

fe=¢ = %m(vi)2 (10)

Where g is the kinetic energy, m the mass of the agent andv the velocity of
movement. Herem = 2 and all kinds of friction is disregarded.

If the agent walks (makes one move per second) in orthogonal directions (B,
D, F and H), its velocity is v = 1 units/sec so the energy consumed for this
alternative is g = 1. Similarly if the agent walks (makes oRe move per second)
in diagonal directions (A, C, E and G), its velocity is v= "~ 2 units/sec so the
energy consumed for this alternative isex = 2. Staying in the current coor-
dination (X) does not consume energy. On the other hand running (making
two moves per second) in every direction doubles the velocity,elading into 4
times energy consumption.

Now we are ready to recast and complete the goal function de ned by (8), (9)
and (10):

r'=ex' + gy " e} (11)

is a dynamic factor as energy saving importance factor which depends on
the personality and the physical situation of the agent and will be discissed
in the next section. So the decision making strategy would be as follosy

i = Arg(Maxr = ex' + gy " el) (12)
I
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4 The Role of the Agent's Emotions in Its Decision
Making Process

The decision making strategy proposed by (12) leads to a deterministiand
optimal agent behavior in our sample scenario. But living intelligent agents
do not necessarily make optimal decisions. In living intelligent agets no deci-
sions are made isolated and without any interferences and moderations ks
emotions. The agent's emotions play an important role in its decision mak-
ing process. For instance it is obvious that the decisions made by a meous
person are di erent from the decisions made by that person when he/shés
in a relief emotional state. This means the behavior of intelligent agets are
to some extent stochastic rather than being completely optimal and deer-
ministic. Therefore, we have to add the in uence of emotions to our ecision
making strategy de ned by (12). This can be achieved by changing dynamic
factors e and g. and so, it will lead to more believable, intelligent and natural
agents.

The factor e; is enemy prevention factor. Intensity of nervousness increases
this factor and so the agent's tendency to escape from enemy. Meanwhil g.
or the goal achievement importance decrease, so leads to the agent's less
tendency to reach to its goal. So, in nervous emotional state:

eC =
" 13
=1 (13)
can be obtained by (6).
On the other hand, the reverse procedure happens when the agent appaches
near its goal. So

e=1"
O = (14)
In other emotional states:
e=1
g =1 (15)

In addition to the above mentioned in uences, the emotional state of the
intelligent agent { in particular when the agent is under a high amount of
stress { a ects its decision making process in another way. Stressauses the
agent to decide incorrectly. The strategy de ned by (12) always retums the
optimal alternative (i ). The optimal solution can be obtained by the following
equation:

i = Arg(Miax(ri)) (16)
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Now we have to show the e ect of stress in its decision making proes. To
enclose the in uence of stress we can use Quasi-Boltzmann's probaityl equa-
tion as follows: 1
p = — a5 X 6 0 a7
1+e ¥

Here p' is the probability of choosing the optimal solution and x° is the
emotion intensity's x-axis trajectory of current emotional state. Regarding
(16) if the agent's emotional state is not nervous &° > 0) the probability
of choosing the optimal solution is 100%, and if its emotional state is very
nervous x° = " 1), the probability is 73.11%. So in this situation the agent
may choose a wrong alternative and get caught by the chasing enemy.

By adding emotions, the nal model of the agent's decision making strat-
egy is constructed. The block diagram of the agent's decision making sticture

is illustrated in Fig. 6.

Bfkinsles ’ Environment

Agent

¥
EEFS R

G
v = l+e |
] 147
ESU o

ArglMax(r' =e ¥ + g v —a¢))]

i

Fig. 6. Block diagram of the agent's decision making structure

5 Simulation

As mentioned before, the sample scenario of this paper includes an agent
and its goal and enemy. The aim of the agent is to reach to its goal with
minimal energy consumption while preventing to be hunt by its eneny. The
eld is square with 100 by 100 allowed points. Both agent and enemy are
just allowed to move orthogonally and diagonally.
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Some examples of simulated behavior of some similar agents are shown in
Fig. 7-10. The Green Star represents the location of the Goal; the Red Star
represents the starting point of the enemy; the Magenta point and sgare
represent the starting point of the agent; Yellow points representthe enemy
path when the agent is not in its eyesight (Enemy Distance> 30m); Magenta
points represent the agent path when it is feeling \Very Nervous" (Enemy
Distance < 18.5m) and is escaping from the enemy and also represent the
enemy path while chasing the agent; Cyan points represent the agent pat
when its emotional state is anything other than the state \Very Nervous";
Red points represent the agent path when it is tired & 6 = 25%) and
nally Blue points represent the wrong decisions made by the agent wkn it
feels \Nervous". For maximizing the believability of the model, we dened
energy consumption for the enemy so after a certain chasing duration,hte
enemy feels tired and will not start chasing the agent unless its engy is
higher than a certain threshold. Also as can be seen, because the eneimgs a
hunter personality, its eyesight power to start chasing (30m), is grater than
the eyesight of the agent when it feels \Very Nervous" and starts escapig
from the enemy (18.5m).

10 !

10 o 40 & 60 0 1 a0 1

Fig. 7. Behavior of agent #1 in 2D view (left) and 3D (versus time) view ( right)

6 Conclusion and Future Work

In this paper a novel model of behavior for intelligent agents was intoduced
and its validity was examined on four similar agents in a goal-approaching
scenario with minimal energy consumption and maximum enemy prevenbn.
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Fig. 10. Behavior of agent #4 in 2D view (left) and 3D (versus time) view ( right)
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Regarding Fig. 7-10, the agent's behavior in this scenario is intelligemn

natural and believable. Also the e ect of the agent's emotion on its behavor
was obvious. For example, as can be seen in Fig. 10, the agent #4 at coordi-

nation (17, 86) faced lack of energy and also made a wrong decision because

of its \Nervous" emotional state and so got hunt by its enemy.

The decision making strategy of this paper is proposed based on four basic

emotions, but any other emotions can be augmented to the model (Eq.12)
easily. Augmenting any other bodily, substantial and moral characterisics to
the model can be easily achieved too.

Still much amount of research and development is required in order to

obtain a complete and comprehensive model. Applying more complex soar-
ios, simulation in a multi-agent environment and combining this modd with
other intelligent methods such as Arti cial Neural Networks, Reinforcement
Learning and Evolutionary Algorithms could be the horizons for future works.
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A Visit on the Uncanny Hill
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Abstract.  The article introduces shortly the Uncanny valley hypoth-
esis and sums up some of the research done in the eld connectedd
it. It explores the possible new options in research or robot design
which could help to subdue this uncanny obstacle on the way to a
pleasant human-robot interaction. It also mentions the possi ble risk
of an uncanny valley phenomenon the other way around, from the
view of arti cial intelligence (Al).

Keywords: human-robot interaction, uncanny valley

1 Introduction

This paper explores the so called Uncanny valley hypothesis in the dht of

the use of humanities and art in human-robot interaction. As all sorts of
Al systems take a bigger part in our day to day lives, we more often face ta
question how to make human-robot interactions pleasant and natural-seeing.

This problem was studied already in 1970 by M. Mori [1, 2], who introduced
the hypothesis how people react to human-like entities. We will éscribe this
hypothesis brie y and show some results concerning its veri caton. Thereafter
we focus on possibilities how the hypothesis of an uncanny valley cadilbe
treated with inspiration coming from art. We suggest that the valley should

be approached from the side of the Al also.

2 The Valley Ahead

The Uncanny valley hypothesis claims that the familiarity, a nity, or c omfort
of our contact with an entity that is similar in some respects to humans s
not a simple linear function. Although it is true that the more human-li ke an
entity is, the more we are comfortable while interacting with it, Mor i supposed
that there is a sudden drop in comfort as we reach a certain point of reasim
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and it does not cease unless we face a real human entity. According to ith
hypothesis, a human test subject should feel little a nity toward s robots that
are not similar to humans (see industrial robots). The subject shouldhave
some level of a nity to humanoid robots but should have an eerie sensation
when confronted with an actroid®. It was already in the original article that

the di erence between motionless and moving entities was explok Mori

mentioned the di erent feeling we have when facing a simple prahetic arm

that is still and when we observe a myoelectric hand.

The topic caught more attention today than at the time when the article
was published. Generally the hypothesis nds support in today's research.
For example, we can see the attempts to broaden the studied aspects [3].
However, there is present also an opposite view. We can take [4] as an exalap
of an article that tries to eliminate the valley. Medical investigation s also could
be taken into account as prosopagnosia or the way how we react to rst time
exposure to unfamiliar faces might play an important role in the subjed.3

3 Valley Hiking in the Modern World

One of the main questions to answer before we try to venture into thevalley
is, if it is necessary to climb up the hill to realism and a nity. A go od artistic
example of this could be Johnny 5 { he has rudimental options how to expess
emotions, he is not human-like but has some basic human characteristicand
he reacts similarly as a human being would. He represents a robot that is
comfortable to interact with, although he does not have human-like featires.

However, Hanson et al. present the following reason why it is worth tryng
to achieve realistic human robots:

...realistically depicted humanlike robotics will serve as an unpar

alleled tool for investigating human social perception and cognition.
In our experiments, our robots have demonstrated clearly that real-
istic robots can be appealing. We conclude that rendering the social
human in all possible detail can help us to better understand social
intelligence, both scienti cally and artistically. [4] (p. 31)

1 An android that is visually very human-like.

2 Basically a moving prosthetic arm. The mentioned example is di rected by electric
signals received from human skin surface.

3 See for example [5] showing that basic observation of facial bekaviour is deep-
rooted and it is present already at a very young age. The great speedwith which
people react to facial stimuli is shown in the study [6].



A Visit on the Uncanny Hill 37

This quote mentions social perception and cognition. Therefore, we capoint
out one of the possible problems connected to the studies of the uncan
valley { they do not use commitment and longer term cooperation. These a@
present in many human interactions and often play an important role in the
formation of our social life. Any feelings of eeriness and discomfort coneéed
to human-like robots could possibly vanish after a few days of interagbn and
be replaced with genuine a ection.

However, we might not need realistically humanoid robots in order to hae
a comfortable human-robot interaction. As the rst idea coming from art, we
mention McCloud's observation from the art of drawing comics. He claims T]
(p. 31) that simple shapes allow the reader for more immersion as they alo
for more universality. Any character that is depicted in a realistic manner
is understood by the reader automatically as something di erent, sonething
exterior to which he cannot relate that easily. This takes into account also
the human tendency to recognize faces in many simple shapes (for exalep
due to pareidolia) and allows us to construct robots with simple forms of
facial expressions. Nevertheless, we need to pay attention to thaét that the
immersion present in comics is due to some other factors also: we are dafte
the witnesses of the character's thoughts, the character is expresgy emotions,
and she is reacting to the situations she faces in an unsurprising wa This
would suggest that a successful comics based interaction is given by abot
that has a simple facial interface and reacts in a way we would expect ito
react.

We can drop the option to share inner thought processes for two reasons.
First, it is a common and quite accepted response in a conversation beken
people to answer: \l don't know", when one is asked about a di cult thought
process. Second, if the robot achieves the other two mentioned poist it will
be attributed a mind by his human colleagues.

We cannot leave the other two demands aside. Being confronted with hu
manoid robots that do not react in an expected way can be similar to facing a
human that reacts abnormally. It leads to a reaction of fear and panic because
the theory of the mind of the encountered person fails to predict or eplain his
actions. The fact that unexpected behaviour is alien to us already fromearly
age is shown for example in [5]. Infants react strongly if their communiation
counterpart does not follow the usual pattern of behaviour and suddent stops
reacting to stimuli.

For the second demand, if we would not request a simple facial interfag we
would return to the original idea of trying to make human-like robots in stead
of making only robots that are pleasant to interact with or we would remain
with machine-like robots. At this point it is our main concern to ameli orate
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the interaction between humans and robots at the lowest cost possiblelf

we focus on facial realism, we might end up with a machine that is great
at expressing emotions but is too complex for a daily use in our livesOn

the other hand, if we omit facial features altogether we fail to facilitate the

human-machine interaction. For this reason we want to stay with a desyn as
simple as possible.

In many respects the fact that human communication is nowadays often
also dependent on a computer interface facilitates our attempts to biend
humans with robots. Many people grow up expressing their emotions inmoti-
cons and text messages and receiving emotional responses in a similarywa
A recent movie named Moon has shown a robot called Gerty that communi-
cated with an emotionally neutral voice but his statements were accompaied
with an emoticon on his main screen showing his mood. It was thanks to
this small screen that communication with Gerty seemed much more @asant
than communication with HAL9000 from the movie 2001: A Space Odyssey.

Many other interactions do not even need any visual interface to work
properly. Already the old psychoanalysis program called Eliza has proven
somewhat e ective in fooling people into believing she had some mih or
intelligence, although she had none [8]. A modern counterpart of Elizas Ap-
ple's Siri, an intelligent personal assistant that responds to voice ammands
and reacts only in voice or by giving the demanded output behaviour (for
example, sending an email). Obviously such applications do not fall ito the
uncanny valley, but they show how minute the trouble with the valley can
be. Emotional modulation of the Al's voice could be enough to give people
(already used to talking over phones) enough feedback to make the intac-
tion close to a human-human exchange. The crucial point is the di erere
in importance people ascribe to visual and auditory stimuli. In order for the
conversation to meet our two demands, the robot could even have a static
chassis and demonstrate all its reactions by his audio systems. Thisew also
leads to the important question of application. What would be the use of a
human-like realistic robot?

As the subtitle of the conference is \arti cial dreams”, the reference to
P. K. Dick's \Do androids dream of electronic sheep?" comes into mind The
human-like androids in that world are used for mining and similar labour. Such
use seems simply unrealistic as it would probably be more cost e ecte to have
specialized machines for these purposes. The scenario of personalistssits is
a more realistic and probable one. Following in the footsteps of Siri tey could
take the form of an audio responding humanoid with supressed or simplie
and non-changeable facial features. We return here again to the questiofthe
valley needs to be crossed. Employing a realistic humanoid assistamould
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only lead to a nity towards this assistant and possible impairment on th e
e ectiveness of its use (for example one would want his assistant to tak some
rest or go for vacation). On the other hand, a well-designed assistant { leus

say still on the hill before the steep drop into the valley { could already make
its human user comfortable enough but prevent him from ascribing too nany
human characteristics to the assistant. This could be achieved by maiaining

an illusion of correct emotional response and simplistic representadin.

4  Foreign Visitors to the Valley

We focused the whole time on the human-robot interaction. If we imagine
however, a robot already capable of genuine emotional response, we can ask
also about the robot-human interaction. If there is a human-robot uncanny
valley, would there be also one for the arti cial participants in the conversa-
tion? How would their emotions react to other robots, perceived by humais
as uncanny? Obviously it is a question closely tied to the mechanissithat
would be incorporated into these robots and thus for now unanswerable.

However, it might already be the time to start evaluating whether we
shouldn't prepare arti cial/Al/robot equivalents of some humanities. Es pe-
cially psychology could be transformed into a tool to work with Al from
a top-down perspective. This might need to be as specialized as ifsuman
counterpart and couldn't be simply presented as some interdisciphary e ort
between psychology and Al. A more \biological" approach to robots and Al
could also help to classify any eeriness or bizarre behaviour as Al coustparts
of human abnormal states without getting lost in too complex bottom-up de-
scriptions and at the same time it would allow the treatment of Al in a similar
manner as humans or animals are treated. A good example of a topic from
psychology that could be useful for our cause is the Asperger syndrome. Aep-
son su ering from this disorder might often make other people uncomforaible
and thus slip into the uncanny valley.

The ultimate use of many of the here mentioned ideas { even the use of
non-human like assistants or psychological classi cations { is closely &d to
the ethics of Al. Do we want to ascribe the same status to beings evolved
from human research and e ort as to those that evolved from the chaos of the
universe?

5 Conclusion

We have introduced the idea of the uncanny valley from M. Mori that robots
that are human-like might make people feel eerie because of their impfect
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similarity to humans. We suggested that the valley does not have to baaken
as an obstacle with regards to the design and goals of many Als and robots
even if they would be interacting with people on a daily basis. Some ogs-
tions still need to be answered before the valley could be left for gab What
stimuli are more relevant in human-human interaction? Aren't contemporary
humans already used to computerized interactions? If so, is it enoughotover-
come the valley and make interactions with robots comfortable? Shouldn'ta
holistic approach, as Al-psychology, be introduced into Al to deal with smilar
problems?
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Why Are We Afraid of Robots?
The Role of Projection in the Popular
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Abstract. The popular conception of robots in ction, Im and
the media, as humanoid monsters seeking the destruction of the hu-
man race, says little about the future of robotics, but a great deal
about contemporary society's anxieties. Through an examinatio n of
the psychoanalytic conception of projection, this essay will examine
how robots, cyborgs, androids and Al are constructed in the popular
imagination, particularly, how robots are feared because they prov ide
unsuitable containers for human projection (unconscious communica-
tion) and how at least part of what we fear in robots is our own huma n
rationality.

Keywords: robots, cyborgs, Al, psychoanalysis, projection, uncanny
valley

I come from a background teaching cultural studies and psychoanalysis.
When | started working with the She eld Centre for Robotics, | was ch arged
with this, rather straight-forward, question: Why are we afraid of robots? If
we look at the cultural evidence, from literature, Im and video games and in
the popular media, it seems that robots have entered the popular imagiation
as monsters on scale comparable to the vampire (and also, it should be noted
with a similar level of ambivalence'). However, perhaps predictably, there is
no single, simple answer for a phenomenon so ubiquitous, no single ebry
that will explain why we are presented again and again with humanoid
machines that want to attack, subvert or enslave the human race. What is

1 We are not, of course, afraid of all robots. There are some robots with which we
have a very dierent set of relations. These are largely, | still ma intain, based
on projections, though a very di erent set of projections than thos e which | am
about to describe in this paper.
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evident is that, as with most of humanity's monsters, the way we pereive
robots says much more about our own anxieties now than any real present or
future developments in robotics. It is my hope that a thorough analysis ofhow
robots are portrayed in popular imagination can not only help us better un-
derstand these underlying anxieties and fears but also inform thosdesigning
the robots of the future as to how their inventions might be met by the public.

To the question, why are we afraid of robots, | want to propose at least
two, intricately related ideas here:

1. We are afraid of the robot because of the existential threat it represets
to our humanity. But by this | must emphasise that | do not mean that
we genuinely fear robots will arise with their familiar arsenal (decepion,
fantasy machines, laser blasters) and wipe humanity o the earth, as it
is so often imagined. Rather, this threat lies in our own fantasies and
conceptions of ourselves, notions that | best understand and can explain
through the notion of projections { complex psychological processes
of relating described in psychoanalytic clinical and cultural theory
Robots, and humanoid robots in particular, are regarded (not without
good reason) as empty, unyieldingcontainers that cannot give or take or
function in the normal course of human projections. They are incapable of
receiving projections, which in more general language means that they ar
incapable of empathy, but understood through the idea of projections we
can grasp the consequences of this in much greater detail. The humanoid
robot, therefore, is instead transformed into a menacing, persecutg
gure that becomes a container for all of our own negative emotions {
the hate and violence of the robot is our own hate and violence that we
imagine is out there, characteristic of these monsters instead of ourbes.

2. From this, it is apparent that our fear of robots is at least in part a fear of
our own rationality , dead, mechanical and calculating. Both the robot and
reason are humanity's own creations, inventions that we fear are becomm
autonomous monsters more powerful than their creator. Somewhere, too,
in that simulacra of humanity { this robot that we have created in our
image, that looks like us and comes to represent us to ourselves { we are
afraid of losing the very qualities that we deem de ne us as human. We
fear becoming that empty shell of cold, mechanical, unfeeling rationasm.
Like so many of our monsters, from Frankenstein to andys [1] to the
Terminator [2], the Borg [3] and even Wallace's wrong trousers [4], we
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fear what we have created, and we fear that the process of construction {
that science itself { will render us less human.

These ideas, | believe, also provide a more detailed account for thehp-
nomenon ofthe uncanny valley an idea which, after all, has at least a certain
root in Freud's early psychoanalytic thinking, and evidence for some ofthis
way of regarding robots and our technological future may be found in the
debate between the “transhumanists' and their self-styled nenses, the "bio-
conservatives', and | hope to make some remarks upon this at my conclusion

Projection is an idea with its roots in Freudian psychoanalysis, buthas
been considerably enriched by Freud's disciples and contemporanysychoan-
alytic clinical and cultural theory. The concept of projection tries to describe
object relations, that is, the way that people relate to things { usually other
people, but also other material and non-material objects in their world. Ideas
of projection, and the related notion of projective identi cation, are used in
cultural studies to provide compelling explanations for phenomenoras diverse
as Nazism and teenage crushes, racism and sports spectatorship.

In projection, it is believed that in psychological fantasy we split o parts
of ourselves and “project' them into something else { a person, an obg¢t, or
even a symbol or an idea { which can then be regarded as a sort gbntainer
for these projections. Sometimes, good parts of the self are projesd into
containers, for safe keeping, for example, or in the case of projectivelénti -
cation, one may project a good part of the self into a container so that itcan
identify with that part in another. This idea of projective identi cation is the
basis forempathy, but also provides a compelling explanation for cultural phe-
nomena such as nationalism, for example, wherein individual people pject
their own positive qualities (say, resilience) into a symbol, oran idea, or a
leader. When a number of people all identify with positive qualities projected
into the container, it provides a collective cohesion, a group iderity.

On the other hand, sometimes negative parts of the self can be projeate
into a container (and in practice it is usually a combination of good and bad
parts that are projected). Bad parts of the self { violent fantasies, hatred,
for example { can be projected away from the self, in order that the sk can
be thought of as pure and all good. When such projections nd a home in
another, that other then becomes the source of that badness, and becomes
a persecuting gure as the hatred and violence that is projected out $ now
imagined returning in the form of the other. The most obvious examples of
such projections are instances of scapegoating, such as commonly seenhwit
racism (and here we see another all-too-familiar component of nationalism)
It is not we who are violent, it is them. They hate us and are out to get us.
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As with the scapegoat, there is a belief that the container of the bad partsof
the self must be destroyed before it can return and destroy us. Tis is a root
of paranoia. The belief that we are being persecuted is our own fantasy.

Though Freud introduced the notions of projections, more contemporary
psychoanalytic thinking has elevated this idea to greater, or even ofhe ut-
most, importance. Projections and projective identi cations are, for many, at
the very centre of human communications and human experience, driveby
what is described as anepistemophilic impulse a desire to know [5]. Projec-
tions are a way of managing the anxiety aroused by the unknown, a fear of
the other, which is particularly important in our investigations into robots. It
is through such projections that we come to know and understand the wdd,
through reality testing and an emotional engagement with the world. Into an
unknown, uncertain space, we fantasise all sorts of things in order to efend
ourselves against the greater fear of uncertainty and emptiness. The bgbpsy-
choanalysts claim, will look at his mother as a mysterious, unknown othe
In happy, or at least normal, times the baby might imagine in his mother a
healthy mix of good and bad objects and motives. However, at times { and
this is true even in normal development { the baby projects his ownbad ob-
jects, his anger and frustrations, into the mother. Those bad parts are pw
imagined to originate and reside in his mother. The baby will imagine thee-
fore his mother as the source of all present and future threats to its bieg. The
baby, psychoanalysts predicted, would regard these threats contained the
mother in concrete terms, as poo and other babies lurking within themummy,
waiting to be expelled or unleashed to destroy the baby and his worldBy
imagining such things and placing them inside the unknown space, th baby
acquires a sort of mastery over the unknown, and over his mother { he ow
knows what is there, because he has put it there. This has the consegnce,
however, of making this other space the source of badness, a place oflelt
becomes something that returns to persecute, to attack { but, again, his is
only the baby's own imagination re ected back onto himself; he imagineshis
own violence, now out there, will come back to get him.

For an example of this as a cultural phenomenon, we need look no further
than the fantasies of imperialism throughout history. European explores in
the nineteenth century, faced with the dark, unknown hearts of corinents,
used their imaginations to populate them with all sorts of savages, cannials
that always acted violently and without a trace of reason, while the “civlised'
Europeans themselves committed genocide and plundered resourcekhese
imagined savages were nothing more than the darkest, most violent impsks
of the imperialists projected out onto the external others, demonigd to justify
violent oppression, war and mass murder, and by keeping these bad partsf
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themselves away and projecting them into another it simultaneouly allowed
the empire to believe its intentions noble, maintaining the ideal fantasy of
empire as civil and good. (Unfortunately, we still see such process at work
in some historical accounts of European imperialism, and also in contempary
neo-imperialist practices.)

We see the same processes at work in the construction of our monsters
throughout the ages, and now we see the same processes in popular repre-
sentations of robots. The Terminator, for example, or Star Trek's Borg are,
among other things, projections of our own, very human, violent fantasis
projected onto an other, an other which then becomes a relentlessupremely
destructive persecuting object. In Do Androids Dream of Electric Sheep?
Phillip K. Dick's novel that is the basis of Ridley Scott's Blade Runner, the
main character, Rick Deckard, provides us with a terri c example of how such
projections operate. The bounty hunter, the epitome of the loner, Dekard
nevertheless believes that it is the humanoid robot { the "andy’ { that is "a
solitary predator'. The narrator tells us, "Rick liked to think of the m that
way; it made his job palatable' [1], which demonstrates how projectios can
function not just through an individual but as the founding myth of an entire
profession, e.g. the bounty hunter, the police, or even an entire ctlre. Refer-
ring to the dominant spiritual and moral system of earth in this future world,
Mercerism, the narrator explains how projections function as a defece, to
maintain an idealised humanity while justifying murder and violence:

In retiring { i.e. killing { an andy he did not violate the rule of life laid
down by Mercer. [...] A Mercerite sensed evil without undersanding
it. Put another way, a Mercerite was free to locate the nebulous pre-
ence of The Killers wherever he saw t. For Rick Deckard an escaped
humanoid robot, which had killed its master, which had been equippd
with an intelligence greater than that of many human beings, which
had no regard for animals, which possessed no ability to feel empathic
joy for another life form's success or grief at its defeat { that, for him,
epitomized The Killers. [1]

Thus projected, the violence is not Deckard's own { it is the andys The
Killers, who are violent; it is their impulses that must be contained. These
projections allow Deckard to reason that his own violence, the ‘reting', or
murder, of the andys, is the only rational response to such seeminglyxérnal
violence.

For many psychoanalysts, projection and projective identi cation are si-
multaneously the basis of all normal human development and inter-subjetive
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communicationsand for psychopathology and virulent cultural practices (fas-

cism, imperialism, racism, etc.). For some, as well, the idea of pjection is

part of normal development and “reality testing' in a way akin to the idea

of "negative feedback' in cybernetics [6]. The di erence betweernormal' and

“abnormal’ or “pathological’ in this case is a matter of degrees { uncomfort-
able distinctions, yes, but ones that need to be made neverthelesfs Robert

Young says, "What is crazy and murderous and what is essential to all ex@

rience and human relations are the sameThe samé [6].

Projections provide a defence, as we have seen above, against unweaht
parts of the self. Such fantasies are key to our understanding of selgnd to
maintaining a coherent sense of being, a psycho-somatic integrity. lis in these
contexts that robots can represent anexistential threat. Psychoanalysts be-
lieve that excessive splitting and projections can leave one fealy fragmented,
in pieces. Projections can also be "misplaced’, that is, projecteinto an unsuit-
able container, one that is incapable of returning the projections in auseful
way, o ering feedback and con rmation of the fantasy. Such unsuitable on-
tainers can cause a feeling of being depleted and weakened, which daad to
a sense of futility and lacking feeling. Such sensations are refedeto as de-
personalisation, a feeling of not being real, which psychoanalysts sometimes
describe as being akin to feeling like an automaton, an empty object in a
world of empty objects [7], [8].

Robots are often portrayed in Im and literature as being at their most
dangerous when they are indistinguishable from humans { again, recallhe
Terminator Ims, the remake of Battlestar Galactica or Dick's Do Androids
Dream?, where the questions of esh or machine are paramount. Deckard,
along with the rest of the human population, longs to keep real animals,
not mechanical imitations; it is feared that andys live hidden in plain view
amongst the human population, and it is Deckard's job is to distinguish be
tween them. The fear that we cannot tell the di erence between man anl
machine is an existential fear, not just in that that we cannot identify, liter-
ally, what it is that is “human' and what is a copy, but that we are unsure
who to trust with our projections. An unsuitable container can have dire con-
sequences for the integrity and conception of the self. This is demaitrated in
Do Androids Dream?: Deckard very explicitly explains that it is this inability
to receive his projections that, at least in part, is responsible forhis hatred of
andys:

He thought, too, about his need for a real animal; within him an
actual hatred once more manifested itself toward his electric sheep
which he had to tend, had to care about, as if it lived. The tyranny
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of an object, he thought. It doesn't know | exist. Like the androids,
it had no ability to appreciate the existence of another. [1]

Furthermore, we can see here the existential threat posed by this ere “object’
{ it doesn't know he exists. The electric sheep, like the andrail, is incapable
of con rming his existence by relating to him through projections. Projec-
tions must be seen to have consequences; they must be processexiurned,
or spurned in some way. The android, however, like the "dead mothef psy-
choanalytic literature [9], is incapable of returning projections. Projections
made into the android or the electric sheep are lost, devoured by theaid,
unresponsive machine.

The theory of the uncanny valleyhas long maintained that it is the robots
that look most humanthat are regarded to be the most dangerous. But why?
The idea of projection provides us with another answer (not necessdy to
discount any others): because it is when robots appear human that we are
tempted to engage with them as humans and not as machines. When it ap-
proximates a human we are able to project those parts of ourselves that ake
us vulnerable to depersonalisation and disintegration; this is when he lim-
itations of the machine threaten our own self, the fabric of our being. This
returns us to Freud's initial notion of the Uncanny: what threatens us is the
unthought known the re ection of self that we cannot accept as the self, that
we dare not acknowledge.

Furthermore, and this | shall return to in my second point, humanoid
robots remind us how close we are to inhumanity ourselves { not that, as
some would hold, they remind us of our own mortality, but that they show
us what we might become: depersonalised, depleted of a ect, empty ohbse
good parts of the self that enable us to empathise and engage with the world
beyond reason.

It is a question of use We are happy to use robots to perform for us,
as entertainment, or to work for us, as slaves. We even might use robots at
times as a substitute when we wish preciselynot to engage with the world,
as a defence from the vicissitudes of emotional engagement. But when we
are invited to use the robot as a container for those parts of ourselves that
are more vital to our very notion of self, we balk, we recoil. We recogniseti
as an unsuitable container for the good parts of ourselves. The robot instel
becomes a container for our negative emotions, those parts of ourselves thae
want to dissociate from ourselves. But we fail to see that fear and anxig and
violence as our own and imagine instead that it originates from the robot its#.
Thus, the robot becomes our creation not only in its physical constructon but
also in its “programming’, if you will { not just the instructions that w e give
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it how to behave, but in our imagination. Our own darkest impulses andfear
become displaced onto the machine. We imagine that it wants to destrows.
It becomes a persecuting object. It is the machine that is driven ly insecurity
to destroy what it thinks threatens it. It is the machine that seek s vengeance.
It is the machine that is driven by lust for conquest and empire.

Does the machine feel any of this? Of course not. But the robot/android
has become another of humanity's great monsters { like the vampire, or the
zombie, or so many other, more culturally speci ¢ beasts (which are smften
the victims of scapegoating). We construct these monsters in our mindsThey
become containers for all of those feelings { our feelings, projections ot
this external other so that we can imagine these impulses are not our owhut
theirs, something that belongsout there, to them, not our own, not lurking
within us.

And this leads into my second point. When we project excessivelyt leaves
us empty, dead inside of ourselves. But also, it isn't just the bad pats of the
self that are projected outward andinto these creaturesthe robots themselves
are the projected bad parts of the self. That modern Prometheus, Fraken-
stein, provides a template for so many contemporary representationsf robots:
human endeavour, science and technology, from the best intentions,reate
nevertheless a monster, a creature that hubris leads us to believthat we can
control. But the unnatural monster gains autonomy and cannot be submitted
to our will. Our creation comes back to haunt us.

We see this story again and again in representations of robots. And like
the monster in Mary Shelley's gothic horror, there is a warning here abut
reason. So many of our monsters since the nineteenth century { Frankestein's
creature, Mr. Hyde, Nazism, zombies and robots { are the terrible prodats
of our own reason and our own science. H.A.L. 9000 [10], The Terminator, the
Borg are ruthless in their e ciency; monsters made all the more destuctive
and potent by the fact that they are guided by a single principle { not an
irrational violence, but a violence that is completely and utterly based in
a calculated, indisputable logic, a fanatical dedication not to myth (as with
the savage or the religious extremist) but to their technological, rational,
scienti ¢ programming. Such monsters are the embodiment of our bad sgks,
the dreaded consequences of our reason, our science and our technology.

Does this mean we should fear robots now or in the future? No. Such cy-
bernetic monsters are ctitious, meant to be object lessons, remiders that
there are { or at least should be { limits on our mastery of the world through
technology. However, | think that what makes these robots even more ult
mately terrifying is the idea that they are the bad parts of ourselvesthat we
know to fear { an unquestioning belief in science and an unbending elotion
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to reason that depersonalises us, that makesis into the callous, in-humane
monsters. If we project parts of ourselves we think bad, such as emafns,
empathy or uncertainty { qualities that are integral to our humanity { in the
quest to create ideal beings of reason, those empty, mechanical sheitgght
well come back to destroy us.

To conclude, | want to introduce some preliminary remarks on the delate
between the self-styled “transhumanists' and those that they regat as their
critics, whom they call “bioconservatives'. | think this debate is instructive,
and important, in the context of some of the issues | have raised here. Ae
transhumanists { “techno-enthusiast' thinkers such as Nick Bostrom Aubrey
de Grey, David Pearce and others { claim that humans and human nature are
improvable “through the use of applied science and other rational methas':

Transhumanists imagine the possibilities in the near future of dra-
matically enhancing human mental and physical capacities, slowing
and reversing the ageing process, and controlling our emotional and
mental states. The imagined future is a new age in which people will
be freed from mental disease and physical decrepitude, able to con-
sciously choose their “natures' and those of their children. [11]

Those, however, who oppose their aims, who are suspicious of the use of
technology to modify humans and human nature, transhumanists label "to-
conservatives'. Some of these objections are based on religious groundsyile
others object on the grounds of future inequality, or on Enlightenment tu-
manist principles.

In the context of projection, we can see some basic dierences betwa
the two groups. Transhumanists, it seems, project good parts of thedf into
technology; in fact, some transhumanists hold out the possibility that ore
day perhaps the entire self { an entire consciousness { can be transferred,
downloaded, into a machine, meaning that somedeal self will be projected
completely into a technological container. The other group { who we will join
the transhumanists for now in calling bioconservatives, though | dont think
we can speak comfortably of them as a single group { see in technology a
threat, the persecution of humanity's goodness. At some level, thee thinkers
seem to have in common a certain idealisation of nature, or of a human nature
that they want preserved and which the transhumanists' future technology
threatens. For the transhumanists, technology is idealised, an all-gos (leading
to a future all good-self) wherein technology successfully contasand thus
preserves the best of the human race and acts as its salvation. It seems t
me, however, that some of those qualities they deem “bad' are some of thes
very qualities that we { right now { regard as essential to human nature: the



50 Michael Szollosy

uncertainty and vulnerability that accompanies aging, reproduction, pain and
death. | say ‘right now', because | regard the notion of trans-historical human
nature' to be itself a construct, another creation of ours that will inevitably
change in the future, just as it has done in the past. It is a fantasy to rgard
any such conception as “ideal' or “inalienable’, though how we idealise ¢r
demonise { such conceptions says a great deal about the values that we \uis
to project.

Who is correct, the transhumanists or the bioconservatives? Neithg of
course. For all projections are fantasies, based on part-objects, halfths,
wishful thinking and, at least on some level, paranoia { an irrational fear of
one thing or another. It is only when we develop a greaterambivalence (by
which | do not mean “indi erence' but an ability to balance bad and good in
a sensible, balanced way) that we can engage with any object, includinthe
robot, the idea of technology or our own technological prowess in a realisti
useful way. What we need to realise is that both groups' projections a& based
in fantasies, and it is those fantasies that must be explored in more ddh.
Projections are, in the beginning, at their heart and certainly at their most
potent, ways in which we cope with anxiety, fantasies that we deployto protect
ourselves from badness. So the questions that need to be ask are, whaafs lie
behind the transhumanists' desires for the technologically-enhared human?
What anxieties lie behind the bioconservatives' resistance to tis imagined
future? Though these are questions for another study, it is only when &
address these issues , | believe, that we will get to the core of thidebate and
understand what it is really about, the ground that each side is battling to
defend, or the monsters that each is trying to keep at bay.
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Abstract.  This paper will look at the various predictions that have
been made about Al and propose decomposition schemas for analyisg
them. It will propose a variety of theoretical tools for analysin g, judg-
ing and improving these predictions. Focusing speci cally on timeline
predictions (dates given by which we should expect the creation of
Al), it will show that there are strong theoretical grounds to expe ct
predictions to be quite poor in this area. Using a database of 95 Al
timeline predictions, it will show that these expectations a re born out
in practice: expert predictions contradict each other considera bly, and
are indistinguishable from non-expert predictions and past failed pre-
dictions. Predictions that Al lie 15 to 25 years in the future are th e
most common, from experts and non-experts alike.

Keywords: Al, predictions, experts, bias

1 Introduction

Predictions about the future development of arti cial intelligence are as con-
dent as they are diverse. Starting with Turing's initial estimati on of a 30%
pass rate on Turing test by the year 2000 [1], computer scientists, phisophers
and journalists have never been shy to o er their own de nite prognodics,

claiming Al to be impossible [2] or just around the corner [3] or anything n

between.

What are we to make of these predictions? What are they for, and what
can we gain from them? Are they to be treated as light entertainment, the
equivalent of fact-free editorials about the moral decline of modern king? Or
are there some useful truths to be extracted? Can we feel con dentttat certain
categories of experts can be identi ed, and that their predictions sand out
from the rest in terms of reliability? In this paper, we start o by pr oposing
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classi cation schemes for Al predictions: what types of predictions ae being
made, and what kinds of arguments or models are being used to justify tm.

Di erent models and predictions can result in very di erent per formances,
and it will be the ultimate aim of this project to classify and analyse their
varying reliability. Armed with this scheme, we then analyse some ofthese
approaches from the theoretical perspective, seeing whether therare good
reasons to believe or disbelieve their results. The aim is not sinip to critique
individual methods or individuals, but to construct a toolbox of assessment
tools that will both enable us to estimate the reliability of a prediction, and
allow predictors to come up with better results themselves.

This paper, the rst in the project, looks speci cally at Al timeli ne pre-
dictions: those predictions that give a date by which we should expédcto see
an actual Al being developed (we use Al in the old fashioned sense of a ma-
chine capable of human-comparable cognitive performance; a less ambiguous
modern term would be "AGI', Arti cial General Intelligence). With the aid of
the biases literature, we demonstrate that there are strong reasons texpect
that experts would not be showing particular skill in the eld of Al timeline
predictions. The task is simply not suited for good expert performarce.

Those theoretical results are supplemented with the real meat of thepa-
per: a database of 257 Al predictions, made in a period spanning from the
1950s to the present day. This database was assembled by researchers from
the Singularity Institute (Jonathan Wang and Brian Potter) systematic ally
searching though the literature, and is a treasure-trove of interesng results.
A total of 95 of these can be considered Al timeline predictions. We assigto
each of them a single “'median Al' date, which then allows us to demonsaite
that Al expert predictions are greatly inconsistent with each other { and
indistinguishable from non-expert performance, and past failed preittions.

With the data, we further test two folk theorems: rstly that predi ctors
always predict the arrival of Al just before their own deaths, and secoully
that Al is always 15 to 25 years into the future. We nd evidence for the
second thesis but not for the rst. This enabled us to show that there seems
to be no such thing as an \Al expert" for timeline predictions: no category of
predictors stands out from the crowd.
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2 Taxonomy of Predictions

2.1 Prediction Types

There will never be a bigger plane built.
Boeing engineer on the 247 (a twin engine plane that held ten people)

The standard image of a prediction is some fortune teller staring deepl
into the mists of a crystal ball, and decreeing, with a hideous certaity, the
course of the times to come. Or in a more modern version, a scientigtredicting
the outcome of an experiment or an economist pronouncing on next year's
GDP gures. But these \at date X, Y will happen" are just one type of
valid prediction. In general, a prediction is something that constrains our
expectation of the future. Before hearing the prediction, we though he future
would have certain properties; but after hearing and believing it, we now
expect the future to be di erent from our initial thoughts.

Under this de nition, conditional predictions {\if A, then B will happ en"

{ are also perfectly valid. As are negative predictions: we might have klieved
initially that perpetual motion machines were possible, and imagined vhat
they could be used for. But once we accept that one cannot violate conser-
vation of energy, we have a di erent picture of the future: one without these
wonderful machines and all their fabulous consequences.

For the present analysis, we will divide predictions about Al into four

types:

1. Timelines and outcome predictions. These are the traditional typesf pre-
dictions, telling us when we will achieve speci c Al milestones.Examples:
An Al will pass the Turing test by 2000 [1]; Within a decade, Als will be
replacing scientists and other thinking professions [4].

2. Scenarios. These are a type of conditional predictions, claiming thatf
the conditions of the scenario are met, then certain types of outcomes il
follow. Example: If we build a human-level Al that is easy to copy and
cheap to run, this will cause mass unemployment among ordinary humans
[5].

3. Plans. These are a speci c type of conditional prediction, claimingthat if
someone decides to implement a speci ¢ plan, then they will be sicessful
in achieving a particular goal. Example: We can build an Al by scanning
a human brain and simulating the scan on a computer [6].

4. Issues and metastatements. This category covers relevant problenvgith
(some or all) approaches to Al (including sheer impossibility resuls), and
metastatements about the whole eld. Examples: an Al cannot be built
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without a fundamental new understanding of epistemology [7]; Generic
Als will have certain (potentially dangerous) behaviours [8].

There will inevitably be some overlap between the categories, buthis
division is natural enough for our purposes. In this paper we will be loolg at
timeline predictions. Thanks to the e orts of Jonathan Wang and Brian Pot ter
at the Singularity Institute, the authors were able to make use of extasive
databases of this type of predictions, reaching back from the presentay back
to the 1950s. Other types of predictions will be analysed in subsequépapers.

2.2 Prediction Methods

Just as there are many types of predictions, there are many ways of arriv
ing at them { consulting crystal balls, listening to the pronouncements of
experts, constructing elaborate models. Our review of publishegredictions
has shown that the prediction methods are far more varied than the typs
of conclusions arrived at. For the purposes of this analysis, we'll dide the
prediction methods into the following loose scheme:

Causal models
Non-causal models

The outside view
Philosophical arguments
Expert authority
Non-expert authority

ogprwNE

Causal model are the staple of physics: given certain facts about the sit
uation under consideration (momentum, energy, charge, etc...) a conabion
is reached about what the ultimate state will be. If the facts were di erent,
the end situation would be di erent.

But causal models are often a luxury outside of the hard sciences, whever
we lack precise understanding of the underlying causes. Some sess can
be achieved with non-causal models: without understanding what inuences
what, one can extrapolate trends into the future. Moore's law is a higty
successful non-causal model [9].

The outside view is a method of predicting that works by gathering to-
gether speci c examples and claiming that they all follow the same unérlying
trend. For instance, one could notice the plethora of Moore's laws acrasthe
spectrum of computing (in numbers of transistors, size of hard drive, network
capacity, pixels per dollar. . .), note that Al is in the same category, and Fence
argue that Al development must follow a similarly exponential curve [10]
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Philosophical arguments are common in the eld of Al; some are sim-
ple impossibility statements: Al is decreed to be impossible for rare or less
plausible reasons. But the more thoughtful philosophical arguments poihout
problems that need to be resolved to achieve Al, highlight interestng ap-
proaches to doing so, and point potential issues if this were to be achied.

Many predictions rely strongly on the status of the predictor: their innate
expertise giving them potential insights that cannot be fully captured in their
arguments, so we have to trust their judgment. But there are problens in
relying on expert opinion, as we shall see.

Finally, some predictions rely on the judgment or opinion of non-expers.
Journalists and authors are examples of this, but often actual experts Wi
make claims outside their domain of expertise. CEQO's, historians, pysicists
and mathematicians will generally be no more accurate than anyone else whe
talking about Al, no matter how stellar they are in their own eld [11].

Predictions can use a mixture of these approaches, and often do. For in-
stance, Ray Kurzweil's "Law of Time and Chaos' uses the outside viewotgroup
together evolutionary development, technological development, and comy-
ing into the same category, and constructs a causal model predictingime
to the “Singularity' [10]. Moore's law (non-causal model) is a key inpit to
this Law, and Ray Kurzweil's expertise is the main evidence for tle Law's
accuracy.

This is the schema we will be using in this paper, and in the predition
databases we have assembled. But the purpose of any such schema is tmb
clarity to the analysis, not to force every prediction into a particular box. We
hope that the methods and approaches used in this paper will be of general
use to everyone wishing to analyse the reliability and usefulnessf predictions,
in Al and beyond. Hence this schema can be freely adapted or discarded &f
particular prediction does not seem to tit, or if an alternative sche ma seems
to be more useful for the analysis of the question under consideration.

3 A Toolbox of Assessment Methods

The purpose of this paper is not only to assess the accuracy and reliakifi
of some of the Al predictions that have already been made. The purpose is
to start building a “toolbox' of assessment methods that can be usednore
generally, applying them to current and future predictions.
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3.1 Extracting Veri able Predictions

The focus of this paper is squarely on the behaviour of Al. This is not a pilo-
sophical point; we are not making the logical positivist argument that only
empirically veri able predictions have meaning [12]. But it must be noted
that many of the vital questions about Al { can it built, when, will it be
dangerous, will it replace humans, and so on { all touch upon behaviour. Tis
narrow focus has the added advantage that empirically veri able predid¢ions
are (in theory) susceptible to falsi cation, which means ultimately agreement
between people of opposite opinions. Predictions like these have &y di er-
ent dynamic to those that cannot be shown to be wrong, even in princips.

To that end, we will seek to reduce the prediction to an empirically ver-
i able format. For some predictions, this is automatic: they are already in
the correct format. When Kurzweil wrote \One of my key (and consistent)
predictions is that a computer will pass the Turing test by 2029," then there
is no need to change anything. Conversely, some philosophical argumerdsn-
cerning Al, such as some of the variants of the Chinese Room argument [13],
are argued to contain no veri able predictions at all: an Al that demonstrated
perfect human behaviour would not a ect the validity of the argument.

And in between there are those predictions that are partially veri able.
Then the veri able piece must be clearly extracted and articulated. Sometimes
it is ambiguity that must be overcome: when an author predicts an Al \Omega
point” in 2040 [14], it is necessary to read the paper with care to gure out
what counts as an Omega point and (even more importantly) what doesn't.

Even purely philosophical predictions can have (or can be interpretd to
have) veri able predictions. One of the most famous papers on the extence
of conscious states is Thomas Nagel's \What is it like to be a bat.” [15]. In ths
paper, Nagel argues that bats must have mental states, but that we humans
can never understand what it is like to have these mental states. Tis feels
purely philosophical, but does lead to empirical predictions: thatif the bat's
intelligence were increased and we could develop a common language, then
at some point in the conversation with it, our understanding would reachan
impasse. We would try to describe what our internal mental states fdl like,
but would always fail to communicate the essence of our experience tthe
other species.

Many other philosophical papers can likewise be read as having empiat
predictions; as making certain states of the world more likely or less {even
if they seem to be devoid of this. The Chinese Room argument, for instnce,
argues that formal algorithms will lack the consciousness that humans posse
[13]. This may seem to be an entirely self-contained argument { but cosider
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that a lot of human behaviour revolves around consciousness, be it dissging
it, commenting on it, de ning it or intuitively noticing it in othe rs. Hence if
we believed the Chinese Room argument, and were confronted with twé\l
projects, one based on advanced algorithms and one based on modi ed human
brains, we would be likely to believe that the second project is moe likely to
result in an intelligence that seemedconscious than the rst. This is simply
because we wouldn't believe that the rst Al could ever be consciousand
that it is easier to seem conscious when one actually is. And that gives an
empirical prediction.

Note that the authors of the predictions may disagree with our “extracted
conclusions. This is not necessarily a game breaker. For instance, @vif there
is no formal link between the Chinese Room model and the predictiombove,
it's still the case that the intuitive reasons for believing the model are also
good reasons for believing the prediction. Our aim should always be tary
and create useful veri able predictions in any way we can. In this wg, we can
make use of much more of the Al literature. For instance, Lucas argues that
Al is impossible because it could not recognise the truth of its own Geel
sentencé[16]. This is a very strong conclusion, and we have to accept a lot of
Lucas's judgments before we agree with it. Replacing the conclusion i the
weaker (and veri able) \self reference will be an issue with advancd Al, and
will have to be dealt with somehow by the programmers" gives us a usef
prediction which is more likely to be true.

Care must be taken when applying this method: the point is to extrad a
useful veri able prediction, not to weaken or strengthen a reviledor favoured
argument. The very rst stratagems in Shopenhauer's \The Art of Always
being Right" [17] are to extend and over-generalise the consequences your
opponent's argument; conversely, one should reduce and narrow down ose
own arguments. There is no lack of rhetorical tricks to uphold one's ow
position, but if one is truly after the truth, one must simply attemp t to nd
the most reasonable empirical version of the argument; the truth-tesing will
come later.

This method often increases uncertainty, in that it often narrows the con-
sequences of the prediction, and allows more possible futures to isk con-
sistently with that prediction. For instance, Bruce Edmonds [18], building on
the \No Free Lunch" results [19], demonstrates that there is no such tling as

3 A Gedel sentence is a sentence G that can be built in any formal system containing
arithmetic. G is implicitly self-referential, as it is equivalen t with \there cannot
exist a proof of G". By construction, there cannot be a consistent proof of G from
within the system.
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a universal intelligence: no intelligence that performs better han average in
every circumstance. Initially this seems to rule out Al entirely; but when one
analyses what this means empirically, one realises there is far less it. It does
not forbid an algorithm from performing better than any human being in any

situation any human being would ever encounter, for instance. So our iitial

intuition, which was to rule out all futures with Als in them, is now replaced
by the realisation that we have barely put any constraints on the future at
all.

3.2 Clarifying and Revealing Assumptions

The previous section was concerned with the predictions' conclusis. Here
we will instead be looking at its assumptions, and the logical structue of
the argument or model behind it. The objective is to make the predition as
rigorous as possible

Philosophers love doing this: taking apart argument, adding caveats and
straightening out the hand-wavy logical leaps. In a certain sense, it @an be
argued that analytic philosophy is entirely about making arguments rigorous
One of the oldest methods in philosophy { the dialectic [20] { also plag this
role, with concepts getting clari ed during the conversation between philoso-
phers and various Athenians. Though this is perhaps philosophy's greast
contribution to knowledge, it is not exclusively the hunting ground of philoso-
phers. All rational elds of endeavour do { and should! { bene t from thi s
kind of analysis.

Of critical importance is revealing hidden assumptions that went irto the
predictions. These hidden assumptions { sometimes called Enthyematic gaps
in the literature [21] { are very important because they clarify where the
true disagreements lie, and where we need to focus our investigatian order
to nd out the truth of prediction. Too often, competing experts wi Il make
broad-based arguments that y past each other. This makes choosing the
right argument a matter of taste, prior opinions and our admiration of the
experts involved. But if the argument can be correctly deconstruced, then
the source of the disagreement can be isolated, and the issue can be died
on much narrower grounds { and its much clearer whether the various exprts
have relevant expertise or not (see Section 3.4). The hidden assunipts are
often implicit, so it is perfectly permissible to construct assumptions that the
predictors were not consciously aware of using.

For example, let's look again at the Gedel arguments mentioned in the
Section 3.1. The argument shows that formal systems of a certain completyi
must be either incomplete (unable to see that their Gadel senteie is true) or
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inconsistent (proving false statements). This is contrasted wih humans, who
{ allegedly { use meta-reasoning to know that their own Gedel statements
are true. It should rst be noted here that no one has written down an actual
\human Gedel statement,” so we cannot be sure humans would actually gure
out that it is true . Also, humans are both inconsistent and able to deal with
inconsistencies without a complete collapse of logic. In this, theyend to di er
from Al systems, though some logic systems such as relevance logic do mami
the same behaviour [22]. In contrast, both humans and Als are not logically
omniscient { they are not capable of proving everything provable within their
logic system (the fact that there are an in nite number of things to prove being
the problem here). So this analysis demonstrates the hidden assurtipn in
Lucas's argument: that the behaviour of an actual computer program running
on a real machine is more akin to that of a logically omniscient formal agent,
than it would be to a real human being. That assumption may be awed or
correct, but is one of the real sources of disagreement over whetherd@elian
arguments rule out arti cial intelligence.

Again, it needs to be emphasised that the purpose is to clarify and analys
arguments, not to score points for one side or the other. It is easy to phras
assumptions in ways that sound good or bad for either \side". It is also easy
to take the exercise too far: nding more and more minor clari cations or
speci ¢ hidden assumptions until the whole prediction becomes a bindred
page mess of over-detailed special cases. The purpose is to clarifyetargument
until it reaches the point where all (or most) parties could agree that these
assumptions are the real sources of disagreement. And then we can conside
what empirical evidence, if available, or expert opinion has to say abotthese
disagreements.

There is surprisingly little published on the proper way of clarifying as-
sumptions, making this approach more an art than a science. If the prediion
comes from a model, we have some standard tools available for clarifying,
though [23]. Most of these methods work by varying parameters in the mode
and checking that this doesn't cause a breakdown in the prediction

Model Testing and Counterfactual Resiliency Though the above works
from inside the model, there are very few methods that can test thestrength
of a model from the outside. This is especially the case for non-causaladels:
what are the assumptions behind Moore's famous law [9], or Robin Hanson's
model that we are due for another technological revolution, based on the

4 One could argue that, by de nition, a human Gedel statement m ust be one that
humans cannot recognise as being a human Gedel statement!
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timeline of previous revolutions [24]? If we can't extract assumptions we're
reduced to saying \that feel right/wrong to me", and therefore we're getting
nowhere.

The authors have come up with a putative way of testing the assumptiois
of such models (in the case of Moore's law, the empirical evidenca favour is
strong, but there is still the question of what is powering the law ard whether
it will cross over to new chip technologies again and again). It involves giing
the model a counterfactual resiliency check: imagining that world fistory had
happened slightly di erently, and checking whether the model would have
stood up in those circumstances. Counterfactual changes are perméd to
anything that the model ignores.

The purpose of this exercise is not to rule out certain models depefing on
one's own preferred understanding of history (e.g. \Protestantism vas essen-
tial to the industrial revolution, and was a uke due to Martin Luther; soit's
very likely that the industrial revolution would not have happened in the way
or timeframe that it did, hence Hanson's model { which posits the industrial
revolutions's dates as inevitable { is wrong"). Instead it is to illustrate the
tension between the given model and other models of history (e.g. \Thes-
sumptions that Protestantism was both a uke and essential to the industrial
revolution are in contradiction with Hanson's model. Hence Hanson's model
implies that either Protestantism was inevitable or that it was non-essential
to the industrial revolution, a extra hidden assumption™). The counterfactual
resiliency exercise has been carried out at length in an online postThe gen-
eral verdict seemed to be that Hanson's model contradicted a lot of seeimgly
plausible assumptions about technological and social development. Modee
law, on the other hand, seemed mainly dependent on the continuing éstence
of a market economy and the absence of major catastrophes.

This method is new, and will certainly be re ned in future. Again, t he
purpose of the method is not to rule out certain models, but to nd the nodes
of disagreement.

More Uncertainty Clarifying assumptions often ends up increasing uncer-
tainty, as does revealing hidden assumptions. The previous secticiocused on
extracting veri able predictions, which often increases the rangeof possible
worlds compatible with a prediction. Here, by clarifying and caveatting as-
sumptions, and revealing hidden assumption, we reduce the numbef worlds
in which the prediction is valid. This means that the prediction puts fewer

5 See http://lesswrong.com/lw/ea8/counterfactual_resiliency_test_for
noncausal
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constraints on our expectations. In counterpart, of course, the caveatd pre-
diction is more likely to be true.

3.3 Empirical Evidence

The gold standard in separating true predictions from false ones must alays
be empirical evidence. The scienti c method has proved to be te best way
of disproving false hypotheses, and should be used whenever podeibOther
methods, such as expert opinion or unjusti ed models, come nowher close.

The problem with empirical evidence is that. .. it is generally nonexistent
in the Al prediction eld. Since Al predictions are all about the exist ence
and properties of a machine that hasn't yet been built, that no-one knovs
how to build or whether it actually can be built, there is little opp ortunity
for the whole hypothesis-prediction-testing cycle. This shouldindicate the
great di culties in the eld. Social sciences, for instance, are often seen as the
weaker cousins of the hard sciences, with predictions much more cantious
and less reliable. And yet the social sciences make use of the scienimethod,
and have access to some types of repeatable experiments. Thus any gieion
in the eld of Al should be treated as less likely than any social sciene
prediction.

That generalisation is somewhat over-harsh. Some Al prediction methods
hew closer to the scienti c method, such as the whole brain emulatns model
[6] { it makes testable predictions along the way. Moore's law is a willly
successful prediction, and connected to some extent with Al. Many pedictors
(e.g. Kurzweil) make partial predictions on the road towards Al; these @an
and should be assessed { track records allow us to give some evidencethe
proposition \this expert knows what they're talking about.” And some mo dels
also allow for a degree of testing. So the eld is not void of empirical eidence;
it's just that there is so little of it, and to a large extent we must p ut our trust
in expert opinion.

3.4 Expert Opinion

Reliance on experts is nearly unavoidable in Al prediction. Timelire predic-
tions are often explicitly based on experts' feelings; even those #t consider
factors about the world (such as computer speed) need an expert judgméen
about why that factor is considered and not others. Plans need experts to
come up with them and judge their credibility. And unless every phlosopher
agrees on the correctness of a particular philosophical argument, we are de
pendent to some degree on the philosophical judgment of the author. It ishe
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purpose of all the methods described above that we can re ne and caveat
prediction, back it up with empirical evidence whenever possit®, and thus
clearly highlight the points where we need to rely on expert opinion.And so
can focus on the last remaining points of disagreement: the premisesi¢m-
selves (that is of course the ideal situation: some predictions are gimedirectly
with no other basis but expert authority, meaning there is nothing to re ne).

Should we expect experts to be good at this task? There have beenvazal
projects over the last few decades to establish the domains and taskehere we
would expect experts to have good performance [25, 26]. Table 1 summaes
the results:

Table 1. Table of task properties conducive to good and poor expert performance.

Good performance: Poor performance:
Static stimuli Dynamic (changeable) stimuli
Decisions about things Decisions about behaviour
Experts agree on stimuli Experts disagree on stimuli
More predictable problems Less predictable problems
Some errors expected Few errors expected
Repetitive tasks Unique tasks
Feedback available Feedback unavailable
Objective analysis available Subjective analysis only
Problem decomposable Problem not decomposable
Decision aids common Decision aids rare

Not all of these are directly applicable to the current paper (are predctions
about human level Als predictions about things, or about behaviour?). One
of the most important factors is whether experts get feedback, prefebly
immediate feedback. We should expect the best expert performanceshen
their guesses are immediately con rmed or discon rmed. When feedhack is
unavailable or delayed, or the environment isn't one that give good fedback,
then expert performance drops precipitously [26, 11].

Table 1 applies to both domain and task. Any domain of expertise strongly
in the right column will be one where we expect poor expert performane. But
if the individual expert tries to move their own predictions in to the left column
(maybe by decomposing the problem as far as it will go, training themsefes on
related tasks where feedback is available. . .) they will be expeed to perform
better. In general, we should encourage this type of approach.
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When experts fail, there are often simple algorithmic models that denon-
strate better performance [27]. In these cases, the experts often gtispell out
their criteria, design the model in consequence, and let the modegive its
predictions: this results in better predictions than simply asking the expert
in the rst place. Hence we should also be on the lookout for experts who
present their ndings in the form of a model.

As everyone knows, experts sometimes disagree. This fact strikes #te
very heart of their supposed expertise. We listen to them becausthey have
the skills and experience to develop correct insights. If other gxerts have gone
through the same process and come to an opposite conclusion, then we have
to conclude that their insights do not derive from their skills and experience,
and hence should be discounted. Now if one expert opinion is a fringe pitisn
held by only a few experts, we may be justi ed in dismissing it smply as an
error. But if there are di erent positions held by large numbers of disagreeing
experts, how are we to decide between them? We need some sort of otfjee
criteria: we are not experts in choosing between experts, so we % no special
skills in deciding the truths on these sorts of controversial posibns.

What kind of objective criteria could there be? A good track record canbe
an indicator, as is a willingness to make veri able, non-ambiguous preditions.
A better connection with empirical knowledge and less theoretical igidity are
also positive indications [28], and any expert that approached their task \ith
methods that were more on the left of the table than on the right should be
expected to be more correct. But these are second order phenomena {ire
looking at our subjective interpretation of expert's subjective opinion { so in
most cases, when there are strong disagreement between experts, sieply
can't tell which position is true.

Grind versus Insight Some Al prediction claim that Al will result from
grind: i.e. lots of hard work and money. Other claim that Al will need spedal
insights: new unexpected ideas that will blow the eld wide open [].

In general, we are quite good at predicting grind. Project managers and
various leaders are often quite good at estimating the length of projec (as
long as they're not directly involved in the project [29]). Even for relatively cre-
ative work, people have su cient feedback to hazard reasonable guesseBub-
lication dates for video games, for instance, though often over-optimiset, are
generally not ridiculously erroneous { even though video games involve ot
of creative design, play-testing, art, programing the game \Al", etc. .. Moore's
law could be taken as an ultimate example of grid: we expect the global e or$
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of many engineers across many elds to average out to a rather predictable
exponential growth.

Predicting insight, on the other hand, seems a much more daunting tas
Take the Riemann hypothesis, a well-established mathematical hypdtesis
from 1885, [30]. How would one go about estimating how long it would take
to solve? How about theP = NP hypothesis in computing? Mathematicians
seldom try and predict when major problems will be solved, becausehey
recognise that insight is very hard to predict. And even if predictions could
be attempted (the age of the Riemann's hypothesis hints that it probably isn't
right on the cusp of being solved), they would need much larger error barthan
grind predictions. If Al requires insights, we are also handicapped ¥ the fact
of not knowing what these insights are (unlike the Riemann hypothes, where
the hypothesis is clearly stated, and only the proof is missing). Thé could be
mitigated somewhat if we assumed there were several di erent insigls, each
of which could separately lead to Al. But we would need good grounds to
assume that.

Does this mean that in general predictions that are modeling grind sbuld
be accepted more than predictions that are modeling insight? Not at all.
Predictions that are modeling grind should only be accepted if they an make
a good case that producing an Al is a matter grind only. The predictions
around whole brain emulations [6], are one of the few that make this case
convincingly; this will be analysed in a subsequent paper.

Non-Experts Opinion It should be born in mind that all the caveats and
problems with non-expert opinion apply just as well to non-experts. With
one crucial di erence: we have no reason to trust the non-expert'sopinion
in the rst place. That is not to say that non-experts cannot come up with
good models, convincing timelines, or interesting plans and scamios. It just
means that our assessment of the quality of the prediction depends onlgn
what we are given; we cannot extend a non-expert any leeway to cover ug
weak premise or a faulty logical step. To ensure this, we should try andssess
non-expert predictions blind, without knowing who the author is. If we can't
blind them, we can try and get a similar e ect by asking ourselves hymthetical
questions such as: \Would | nd this prediction more or less convincirg if the
author was the Archbishop of Canterbury? What if it was Warren Bu et?
Or the Unabomber?" We should aim to reach the point where hypothetical
changes in authorship do not a ect our estimation of the prediction.
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4 Timeline Predictions

The practical focus of this paper is on Al timeline predictions: pralictions
giving dates for Als with human-comparable cognitive abilities. Researbers
from the Singularity Institute have assembled a database of 257 Al preditons
since 1950, of which 95 include Al timelines.

4.1 Subjective Assessment

A brief glance at Table 1 allows us to expect that Al timeline predictions
will generally be of very poor quality. The only factor that is unambiguously
positive for Al predictions is that prediction errors are expected andallowed:
apart from that, the task seems singularly di cult, especially on the k ey issue
of feedback. An arti cial intelligence is a hypothetical machine, which has
never existed on this planet before and about whose properties we haJait
the haziest impression. Most Al experts will receive no feedback hatsoever
about their predictions, meaning they have to construct them entrely based
on their untested impressions.

There is nothing stopping experts from decomposing the problem, oran-
structing models which they then calibrate with available data, or putting
up interim predictions to test their assessment. And some do usehese bet-
ter approaches (see for instance [10, 5, 31]). But a surprisingly large nundp
don't! Some predictions are unabashedly based simply on the feelings tife
predictor [32, 33].

Yet another category are of the \Moore's law hence Al" type. They pos-
tulate that Al will happen when computers reach some key level, often om-
paring with some key property of the brain (hnumber of operations per seond
[34], or neurones/synapsed. In the division established in section 3.4, this
is pure “grind' argument: Al will happen after a certain amount of work is
performed. But, as we saw, these kinds of arguments are only valid if t
predictor has shown that reaching Al does not require new insights! Ad that
step is often absent from the argument.

4.2 Timeline Prediction Data

The above were subjective impressions, formed while looking ov¢he whole
database. To enable more rigorous analysis, the various timeline predicins

6 See for instance Dani Eder's 1994 Newgroup posting http://www.aleph.se/
Trans/Global/Singularity/singul.txt
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were reduced to a single number for purposes of comparison: this woulde
the date upon which the predictor expected “human level Al' to be deeloped.

Unfortunately not all the predictions were in the same format. Some gave
ranges, some gave median estimates, some talked about superintelligeft,
others about slightly below-human Al. In order to make the numbers com-
parable, one of the authors (Stuart Armstrong) went through the list and
reduced the various estimates to a single number. He followed the flolwing
procedure to extract a \Median human-level Al estimate™:

When a range was given, he took the mid-point of that range (rounded
down). If a year was given with a 50% likelihood estimate, he took that war.
If it was the collection of a variety of expert opinions, he took the predction
of the median expert. If the predictor forsaw some sort of Al by a given dag
(partial Al or superintelligent Al), and gave no other estimate, he took t hat
date as their estimate rather than trying to correct it in one directi on or the
other (there were roughly the same number of subhuman Als as suphuman
Als in the list, and not that many of either). He read extracts of the papersto
make judgement calls when interpreting problematic statements ke \within
thirty years" or \during this century” (is that a range or an end-date?) . Every
date selected was either an actual date given by the predictor, or the ndapoint
of a range’

It was also useful to distinguish between popular estimates, perfoned by
journalists, writers or amateurs, from those predictions done by thosewvith ex-
pertise in relevant elds (Al research, computer software developrent, etc. . .)
Thus each prediction was noted as “expert' or “non-expert'; the expsation be-
ing that experts would demonstrate improved performance over non-eperts.

Figure 1 graphs the results of this exercise (the range has been reced;
there were seven predictions setting dates beyond the year 2100, theef them
expert.)

As can be seen, expert predictions span the whole range of possibiliie
and seem to have little correlation with each other. The range is so wid
{ fty year gaps between predictions are common { that it provides strong
evidence that experts are not providing good predictions. There des not seem
to be any visible di erence between expert and non-expert perfomance either,
suggesting that the same types of reasoning may be used in both situatian
thus negating the point of expertise.

" The data can be found at http://www.neweuropeancentury.org/SIAI-FHI_Al
predictions.xls ; readers are encouraged to come up with their own median
estimates.
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Fig. 1. Median estimate for human-level Al, graphed against date of pre diction.

Two explanations have been generally advanced to explain poor expert
performance in these matters. The rst, the so-called Maes-Garreau aw?
posits that Al experts predict Al happening towards the end of their own
lifetime. This would make Al into a technology that would save them from
their own deaths, akin to a "Rapture of the Nerds'.

The second explanation is that Al is perpetually fteen to twenty-v e
years into the future. In this way (so the explanation goes), the pedictor can
gain credit for working on something that will be of relevance, but without
any possibility that their prediction could be shown to be false within their
current career. We'll now look at the evidence for these two explaations.

Nerds Don't Get Raptured Fifty- ve predictions were retained, in which
it was possible to estimate the predictor's expected lifespan. Tan the dif-
ference between their median prediction and this lifespan was comyed (a
positive di erence meaning they would expect to die before Al, a ngative

8 Kevin Kelly, editor of Wired magazine, created the law in 2007 a fter being in u-
enced by Pattie Maes at MIT and Joel Garreau (author of Radical Ev olution).

































































































































































































































