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Abstract. This article describes advances in Czech – Signed Speech
translation. A method using a new criterion based on minimal loss prin-
ciple for log-linear model phrase extraction was introduced and it was
evaluated against two another criteria. The performance of phrase ta-
ble extracted with introduced method was compared with performance
of two another phrase tables (manually and automatically extracted).
A new criterion for semantic agreement evaluation of translations was
introduced too.
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1 Introduction

In the scope of this paper, we are using the term Signed Speech (SS) for both
the Czech Sign Language (CSE) and Signed Czech (SC). The CSE is a natural
and adequate communication form and a primary communication tool of the
hearing-impaired people in the Czech Republic. It is composed of the specific
visual-spatial resources, i.e. hand shapes (manual signals), movements, facial ex-
pressions, head and upper part of the body positions (non-manual signals). It is
not derived from or based on any spoken language. On the other hand the SC
was introduced as an artificial language system derived from the spoken Czech
language to facilitate communication between deaf and hearing people. SC uses
grammatical and lexical resources of the Czech language. During the SC produc-
tion, the Czech sentence is audibly or inaudibly articulated and simultaneously
the CSE signs of all individual words of the sentence are signed.

2 Phrase-Based Machine Translation

The goal of the machine translation is to find the best translation t̂ = w1, ..., wI

of the given source sentence s = w1, ..., wJ . The state of the art solution of this
problem is using log-linear model [1]:

Pr(t|s) = pλM

1

(t|s) =
exp(

∑M

m=1 λmhm(t, s))
∑

t′
exp(

∑M

m=1 λmhm(t′, s))
(1)
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There are feature models hm(t, s), which model a relationship between the source
and the target language and its weights λm. If we want to have the best trans-
lation we should choose the one with the highest probability, thus:

t̂ = argmax
t

{

exp(
∑M

m=1 λmhm(t, s))
∑

t′
exp(

∑M

m=1 λmhm(t′, s))

}

= argmax
t

{

M
∑

m=1

λmhm(t, s)

}

,

(2)
where we have disregarded the denominator of the Equation 2. In the log-linear
model we can use a portion of different feature models. The source sentence s is
segmented into a sequence of K phrases s̄1, ..., s̄K which we call phrase alignment
(all possible segmentations have the same probability) in the case of phrase-
based translation. We define the phrase of a given length l as a continual word
sequence: s̄i = wj , ..., wj+l, j = 1, ..., J − l. Each source phrase s̄i, i = 1, ...,K
is translated into a target phrase t̄i in the decoding process. This particular ith

translation is modeled by a probability distribution φ(s̄i|t̄i). The target phrases
can be reordered to get more precise translation. The reordering of the target
phrases can be modeled by a relative distortion probability distribution d(ai −
bi−1) as in [3], where ai denotes the start position of the source phrase which
was translated into the ith target phrase, and bi−1 denotes the end position of
the source phrase translated into the (i − 1)th target phrase. The basic feature
models are: the both direction translation models φ, distortion model d, n-gram
based language model pLM and phrase pPhP and word pWP penalty models. The
mostly used method for the weight adjustment is minimum error rate training
(MERT) [2], where the weights are adjusted to minimize the error rate of the
resulting translation:

λ̂M
1 = argmin

λM

1

{

N
∑

n=1

K
∑

k=1

E(rn, tn,k)δ(t̂(sn, λM
1 ), tn,k)

}

(3)

t̂(sn, λM
1 ) = argmax

t∈Cn

{

M
∑

m=1

λmhm(t, sn)

}

(4)

δ(t̂(sn, λM
1 ), tn,k) =

{

1 if t̂(sn, λM
1 ) = tn,k

0 else
,

where N is number of sentence pairs in a training corpus, E error criterion
which is minimized, rn is reference translation of the source sentence sn and
Cn = {tn,1, ..., tn,K} is a set of K different translations tn of each source sentence
sn.

3 Phrase Extraction Based on Minimal Loss Principle

The main source of the SMT system is a phrase table with bilingual pairs of
phrases. State of the art methods for the phrase extraction are based on align-
ment modeling (especially on the word alignment modeling). The word alignment



can be modeled by probabilistic models of different complexity (Models 1 – 6 [7]).
The model complexity directly influences the alignment error rate and thus the
translation accuracy: the more complexity model, the better translations. How-
ever, more complicated models are computationally challenging. For example,
the task of finding the Viterbi alignment for the Models 3 – 6 is an NP-complete
problem [7]. Only a suboptimal solution can be found with usage of approxi-
mations. In addition, it was founded that the next reduction of word alignment
errors does not have to lead to better translations [8]. Because of problems with
word alignment models we have proposed using of the log-linear model for the
phrase extraction, which can be optimized directly to the translation precision.
Our solution is similar to the one in work [9] with some differences. Firstly, we
are using different set of features without using of any alignment modeling. Sec-
ondly, we introduce a new criterion for phrase extraction based on a minimal
loss principle.

Method Description Our task is to find for each source phrase s̄ its trans-
lation, i.e. the corresponding target phrase t̄. We suppose that we have a
sentence aligned bilingual corpus (pairs of the source and target sentences).
We start with the source sentence s = w1, ..., wJ and the target sentence
t = w1, ..., wI and generate a bag β of all possible phrases up to the given length
l: β{s} = {s̄m}l

m=1, {s̄m} = {wn, ..., wn+m−1}
J−m+1
n=1 , β{t} = { ¯tm}l

m=1, { ¯tm} =
{wn, ..., wn+m−1}

I−m+1
n=1 . The source phrases longer than one word are keep-

ing for next processing only if they have been seen in the corpus at least as
much as given threshold τ (reasonable threshold is five). All target phrases
are keeping regardless of the number of their occurrence in the corpus. Each
target phrase is considered to be a possible translation of each kept source
phrase ∀s̄ ∈ β{s} : N(s̄) ≥ τ : s̄ → β{t}, where N(s̄) is number of oc-
currences of phrase s̄ in the corpus. Now for each possible translation pair
(s̄, t̄) : t̄ ∈ T (s̄), T (s̄) = {t̄} : s̄ → t̃ we compute its corresponding score:

c(s̄, t̄) =

K
∑

k=1

λkhk(s̄, t̄), (5)

where hk(s̄, t̄), k = 1, 2, ...,K is set of K features, which describe the relationship
between the pair of phrases (s̄, t̄). The MERT training can be used for weights
λk optimization. The resulting scores c = {c} are stored in a hash table, where
the source phrase s̄ is the key and all possible translations t̄ ∈ T (s̄) with its score
c(s̄, t̄) are the data. We process the whole training corpus and store the scores
for all possible translation pairs.

The next step is choosing only ”good” translations t̄G from all possible
translations T (s̄) for each source phrase s̄, i.e. we get a set of translations
TG(s̄) = {t̄G} : s̄ → t̄G. For each sentence pair we generate the bag of all
phrases up to the given length l for both sentences. Then for each s̄ ∈ β(s) we
compute a translation loss LT for each t̄ ∈ T (s̄) = β(t). The translation loss



LT for the source phrase s̄ and its possible translation t̄ is defined as:

LT (s̄, t̄) =

∑

s̃i∈β(s),s̃i 6=s̄ c(s̃i, t̄)

c(s̄, t̄)
(6)

We compute how much probability mass we lost for the rest of source phrases
from the bag β(s) if we translate s̄ as t̄. For each s̄ we store all translation losses
LT (s̄, t̄) for all t̄ ∈ β(t). The ”good” translation t̄G for s̄ is the one (or more)
with the lowest translation loss LT (s̄, t̄):

t̄G = argmin
t̄

LT (s̄, t̄) (7)

and all the other translations are discarded. We process all sentence pairs and get
a new phrase table. This table comprises source phrases s̄, corresponding ”good”
translations t̄G ∈ TG(s̄) only, and the numbers of how many times a particular
translation t̄ was determined as a ”good” translation t̄G. These information can
be then used for example for calculation of translation probabilities φ.

Used Features We used only features based on number of occurrences of trans-
lation pairs and particular phrases in the training corpus. We collect these num-
bers: number of occurrences of each considered source phrase N(s̄), number of
occurrences of each target phrase N(t̄), number of occurrences of each possi-
ble translation pair N(s̄, t̄) and number of how many times was given source or
target phrase considered as translation NT (s̄) and NT (t̄) (it corresponds to the
number of all phrases for which was given phrase considered as their possible
translation in all sentence pairs). These numbers are used to compute the fol-
lowing features: translation probability φ, probability pT that given phrase is a
translation - all for both translation directions and translation probability pMI

based on mutual information. The translation probability φ is defined on base
of relative frequencies as [3]:

φ(s̄|t̄) =
N(s̄, t̄)

N(t̄)
φ(t̄|s̄) =

N(s̄, t̄)

N(s̄)
(8)

Probability pT , that given phrase is a translation, i.e. it appears together with
considered phrase as its translation, is defined as:

pT (s̄|t̄) =
N(s̄, t̄)

NT (t̄)
pT (t̄|s̄) =

N(s̄, t̄)

NT (s̄)
(9)



Translation probability pMI based on mutual information is defined as [10] (we
can use both numbers N and NT for computing):

pMI(s̄, t̄) =
MI(s̄, t̄)

∑

t̄∈T (s̄) MI(s̄, t̄)
pMIT

(s̄, t̄) =
MIT (s̄, t̄)

∑

t̄∈T (s̄) MIT (s̄, t̄)
(10)

MI(s̄, t̄) = p(s̄, t̄) log
p(s̄, t̄)

p(s̄) · p(t̄)
MIT (s̄, t̄) = pT (s̄, t̄) log

pT (s̄, t̄)

pT (s̄) · pT (t̄)
(11)

p(s̄, t̄) =
N(s̄, t̄)

NS

pT (s̄, t̄) =
N(s̄, t̄)

NT

(12)

p(s̄) =
N(s̄)

NS

p(t̄) =
N(t̄)

NS

pT (s̄) =
NT (s̄)

NT

pT (t̄) =
NT (t̄)

NT

, (13)

where NS is the number of all sentence pairs in the corpus and NT is the number
of all possible considered translations, i.e. if source sentence length is five and
target sentence length nine then we add 45 to NT . Finally we have six features:
φ(s̄|t̄), φ(t̄|s̄), pT (s̄|t̄), pT (t̄|s̄), pMI(s̄, t̄) and pMIT

(s̄, t̄) for the phrase extraction.

4 Tools and Evaluation Methodology

Data The main resource for the statistical machine translation is a parallel
corpus which contains parallel texts of both the source and the target language.
Acquisition of such corpus in case of SS is complicated by the absence of the
official written form of both the CSE and the SC. Therefore we have used the
Czech to Signed Czech (CSC) parallel corpus [4] for all experiments. For the
purpose of experiments we have split the CSC corpus into training, development
and testing part, which are described in Table 1 in more details.

Evaluation Criteria We have used the following well known criteria for eval-
uation of our experiments. The first criterion is the BLEU score: it counts
modified n-gram precision for output translation with respect to the reference
translation. The second criterion is the NIST score: it counts similarly as BLEU
modified n-gram precision, but uses arithmetic mean and weighing by informa-
tion gain of each n-gram. Next criterion is Sentence Error Rate (SER): it
is a ratio of the number of incorrect sentence translations to the number of all
translated sentences. The Word Error Rate (WER) criterion is adopted from
ASR area: is defined as the Levensthein edit distance between the produced
translation and the reference translation in percentage (a ratio of the number
of all deleted, substituted and inserted produced words to the total number of
reference words). The third error criterion is Position-independent Word

Error Rate (PER): it compares two sentences without regard to their word
order. These criteria however evaluate only lexical agreement between the ref-
erence and the resulting translation. But in the automatic translation we need
to find out if two different word constructions have the same meaning, i.e. are
semantically identical, because there are always equally correct different trans-
lations of each source sentence (for example there are mostly more reference



Table 1. Dividing of the CSC corpus into training, development and testing part.

Training data Development data Testing data

CZ SC CZ SC CZ SC

Sent. pairs 12 616 1 578 1 578

# words 86 690 86 389 10 700 10 722 10 563 10 552

Vocab. size 3 670 2 151 1 258 800 1 177 748

# singletons 1 790 1 036 679 373 615 339

OOV(%) – – 240 (2.24) 122 (1.14) 208 (1.97) 105 (1.00)

translations of each source sentence in the corpus). We have proposed a new Se-

mantic Dimension Overlap (SDO) criterion to evaluate semantic similarity
of the translations between Czech and SC. The SDO criterion is based on the
overlap between semantic annotation of the reference translation and semantic
annotation of the resulting translation. The semantic annotation is created by
HVS (Hidden Vector State) parser [5], which is trained on the CSC corpus data
(the CSC corpus contains semantic annotation layer needed for the HVS parser
training). A lower values of the three error criteria: SER, WER, PER and a
higher values of the three precision criteria: BLEU, NIST, SDO indicates better,
i.e. more precise translation.

Decoders Two different phrase-based decoders were used in our experiments.
The first decoder is freely available state-of-the-art factored phrase-based beam-
search decoder - MOSES1 [6], which uses log-linear model (MERT training).
The training tools for extraction of phrases from the parallel corpus are also
available, i.e. the whole translation system can be constructed given a parallel
corpus only. For the language modeling was used the SRILM2 toolkit.

The second decoder is our implementation of monotone phrase-based de-
coder - SiMPaD, which already uses log-linear model (MERT training). The
monotonicity means using the monotone reordering model only, i.e. no phrase
reordering is permitted during the search. SiMPaD uses SRILM2 language mod-
els and the Viterbi algorithm for the decoding, which defines generally n-gram
dependency between translated phrases.

5 Experiments and Conclusion

Phrase Extraction Based on Minimal Loss Principle In the first ex-
periment we compared the new criterion based on minimal loss principle (ML)
proposed in Section 3 with two another criteria for the phrase extraction. All
six features defined in Section 3 was used in log-linear model. The first one

1 http://www.statmt.org/moses/
2 http://www.speech.sri.com/projects/srilm/download.html



(BestG) is criterion used in the work [9] which selects all translation pairs for
each sentence pair with score c higher than maximal score cm − threshold τ .
The second one (BestL) criterion is criterion which selects only the translation
pair with the highest score cm for each source phrase in the sentence pair. The
results are in Figure 1, where N means a number of first N best scores c selected
for each source phrase. The ML criterion performs best (75.09), the second is
BestL criterion (72.83) and the last is BestG criterion (72.31).

Phrase Table and Decoders Comparison In this experiment we have com-
pared the translation accuracy of handcrafted (HPH) and automatically ex-
tracted phrases (phrases extracted by Moses (MPH) and phrases extracted by
the method described in Section 3 (MLPH)). In the case of the MLPH table
extraction we used additional techniques as a intersection of phrase tables for
both translation directions and a subsequent filtration of the resulting table
trough the training data translation. We compared both decoders too (M for
MOSES, S for SiMPaD). The results in Table 2 are reported for testing data
after MERT optimization on the BLEU criterion. The bootstrap method was
used for acquisition of reliable results and confidence intervals (lower and upper
indexes).
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Fig. 1. Comparison of different criteria for the phrase extraction.



Table 2. Comparison of different phrase tables and decoders.

HPH MPH MLPH

Size 5 325 65 494 11 585

M S M S M S

Bleu[%] 81.291.27

1.29 81.221.31

1.31 80.871.31

1.31 81.081.27

1.32 80.201.28

1.33 80.211.32

1.36

NIST 11.650.13

0.14 11.650.13

0.13 11.570.13

0.14 11.580.14

0.14 11.470.14

0.14 11.440.14

0.14

SER[%] 38.153.49

3.30 38.533.42

3.30 38.213.42

3.42 38.593.49

3.36 40.563.49

3.36 42.903.55

3.36

WER[%] 13.141.33

1.29 13.061.32

1.25 13.431.36

1.31 13.431.31

1.25 14.481.41

1.35 14.881.42

1.33

PER[%] 11.641.22

1.17 11.721.20

1.13 11.851.21

1.16 11.931.20

1.13 12.951.21

1.18 13.241.26

1.16

SDO[%] 92.081.95

2.37 92.251.96

2.30 92.122.03

2.30 92.112.01

2.39 90.842.07

2.49 90.822.13

2.51

The results show that HPH and MPH tables perform equal while the MLPH
table is about one to two percent depending on the criterion behind them. The
main advantage of the HPH and MLPH tables is their smaller size in confronta-
tion with the MPH table size. The HPH table is about twelve times and the
MLPH table about five times smaller than the MPH table. The difference be-
tween results of both decoders is negligible too except the result for the SER
criterion and the MLPH table. An explanation of this difference can be a good
theme for a future examination.
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