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Abstract
This paper deals with adaptation techniques based on maximum
likelihood linear transformations, which are well suited for the
task of on-line recognition. When transcriptions are available
before the system starts running, we are speaking about super-
vised adaptation. In unsupervised adaptation the transcriptions
have to be computed in the first pass of the recognition pro-
cess. This is often the case in on-line recognition, where data
are gathered continuously. Because the system does not work
perfectly it is suitable to assign a certainty factor (CF) to each
of the transcriptions. Only data that transcriptions have high CF
are used for the adaptation.

In the on-line recognition, the adaptation (in the sense of
updating transformation formulas) has to be performed itera-
tively whenever the amount of recognized data reaches the pre-
specified level. When small amount of adaptation data is avail-
able, it is suitable to involve regression trees to cluster similar
model parameters. It is quite useful to adapt both speech and
silence parameters. Because speech and silence have very dif-
ferent characteristics, we have separated them into two differ-
ent clusters. Presented methods have been tested on short term
recordings and results have proved the suitability of the pro-
posed approach.

1. Introduction
After twenty years of intensive research in the field of the
speech recognition, the technology has become usable in com-
mon applications. In this paper we focus mainly on adaptation
techniques in the on-line recognition of speech [1],[2].

The Hidden Markov Model (HMM) with output probabili-
ties described by Gaussian Mixture Models (GMMs) has been
proved as an efficient tool in the speech recognition [3]. To
train the HMM, it is necessary to have large amount of data
from many speakers. The final model, denoted as Speaker In-
dependent (SI), is able to recognize speech from any speaker.
When the speakers identity is known, we could acquire addi-
tional lowering of the error rate by using a model trained on
the data from a particular speaker. Such a model is called the
Speaker Dependent (SD) model. The main problem by the con-
struction of the SD model is the need of a large database of
utterances from one speaker. This problem is in praxis often
non-solvable. The solution is provided by the adaptation of an
acoustic model, as described in Section 2. The choice of the
adaptation technique depends on the actual problem, in systems
for on-line recognition it is restricted mainly by the time con-
sumption of adopted methods. Thus, in our system we have
utilized linear transformations based on Maximum Likelihood
(ML), where a transformation is computed for all the parame-
ters in a given cluster – see Section 3. Such an approach can

be applied in situations when only small amount of adaptation
data are at hand. As the characteristics of speech and silence are
very different, they should be considered separately. Therefore,
we proposed a simple division of speech and silence parameters
of the acoustic model as described in Section 3.2.

In on-line recognition the reference transcriptions of adap-
tation data are not available. In this case we speak about unsu-
pervised adaptation mentioned in Section 4. Problems related
to the on-line adaptation are summarized in Section 5. The de-
tailed description of our system with proposed experiments can
be found in the last part of the paper (Section 6). The results
prove the suitability of adopted methods and adaptation tech-
niques improve the recognition.

2. Adaptation techniques
The difference between the adaptation and ordinary training
methods stands in the prior knowledge about the distribution
of model parameters, usually derived from the SI model [4].
The adaptation adjusts the model so that the probability of the
adaptation data would be maximized. This is equivalent to
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feature vectors related to one speaker,λ∗ is the best esti-
mation of parameters of the SD model. We will focus now
on HMMs with output probabilities of states represented by
GMMs. GMM of the j − th state is characterized by a set
λj = {ωjm, µjm, Cjm}

Mj

m=1, whereMj is the number of mix-
tures,ωjm, µjm andCjm are weight, mean and variance of the
m− th mixture, respectively. Let us define some statistics used
by the description of adaptation techniques:
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stands for them − th mixtures’ posterior,
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is the soft count of mixturem,
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represents the average of features in frames which align to mix-
turem in the j-th state and note thatσ2

jm = diag(Cjm) is the
diagonal of the covariance matrixCjm.



The most know adaptation methods are Maximum A-
posteriori Probability (MAP) [5] and linear transformations
based on the Maximum Likelihood (ML) [6]. The first ap-
proach is mainly used in cases when big amount of training data
is available, because each of model parameters demands suffi-
cient amount of data to be adapted. The latter method has the
advantage that model parameters are clustered in an convenient
way (see Section 3), hence several parameters share the same
transformation. Thus less amount of data is needed.

2.1. Linear Transformations based on Maximum Likeli-
hood

These methods are focused on the adaptation of means and vari-
ances of GMMs (the mixture weights are of no interest) and are
based on the minimization of the auxiliary function [7]:
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1
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(5)
The number of available model parameters is reduced via

clustering (see Section 3) of similar model components. The
transformation is the same for all of the parameters from the
same clusterKn, n = 1, . . . , N . Hence, less amount of adap-
tation data is needed.

Further, we distinguish unconstrained and constrained
transformations. In the unconstrained case, means and vari-
ances from the particular cluster are adapted utilizing two dis-
tinct matrices, whereas in the constrained case the same matrix
is used for both.

2.1.1. Maximum Likelihood Linear Regression (MLLR)

MLLR can be regarded as an unconstrained adaptation, means
and variances from the same clusterKn are transformed sepa-
rately according to formulas:

µ̄jm = A(n)µjm + b(n) = W(n)ξjm , (6)

C̄jm = H(n)CjmH
T
(n) , (7)

where µ̄jm, C̄jm are the new adapted mean and covariance
of the m − th mixture in thej − th state of the HMM, re-
spectively. A(n) is the regression matrix related to the clus-
ter Kn, b(n) is the additive vector andW(n) = [A(n), b(n)],
ξjm = [µT

jm, 1]T is the original mean extended by 1 andH(n)

represents the transformation matrix for the covariance.
First, let’s focus on the transformation matrix of means. It

can be shown [8] that the part of the function (5) that changes
with the current transformW(n) is:
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where the column vectorw(n)i, i = 1, . . . , I is the transpose of
thei-th row ofW(n) andI = dim(o),
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And finally, after maximization of equation (8) with respect to
the row of the mean transformation matrixW(n) we obtain:

∂Q(λ, λ̄)

∂W(n)
= 0 ⇒ w(n)i = G

−1
(n)ik(n)i . (11)

Similar procedure can be utilized also for the derivation of the
transformation matrixH(n) for covariances, and can be found
in e.g. [7],[6].

2.1.2. Feature Maximum Likelihood
Linear Regression (fMLLR)

Compared to the MLLR case, fMLLR is a constrained adapta-
tion. Hence, means and covariances from the same clusterKn

are transformed with the same matrix, what gives us the abil-
ity to transform directly the featuresot instead of the model
parametersµjm andCjm [8]. The feature vectors are trans-
formed according to the formula

ōt = A(n)ot + b(n) = W(n)ξ(t) , (12)

whereW(n) = [A(n), b(n)] stands for the transformation ma-
trix corresponding to then − th clusterKn, ξ(t) = [oT

t , 1]T

represents the extended feature vector. In analogy with the pre-
vious section, it is possible to rearrange the auxiliary function
(5) into the form [8]
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To find the solution of equation (13) we have to expressA(n)

in terms of W(n), e.g. use the equivalencylog |A(n)| =

log |wT
(n)iv(n)i|, wherev(n)i stands for transpose of thei− th

row of cofactors of the matrixA(n) extended with a zero in the
last dimension. After the maximization of the auxiliary function
(13) we receive
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quadratic function
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Two different solutionsw1,2
(n)i are obtained, because of the

quadratic function (19). The one that maximizes the auxiliary



function (13) is chosen. The log likelihood for fMLLR can be
computed as

logL
(

ot|µm, Cm, A(n), b(n)

)

=

= logN
(

A(n)ot + b(n); µm, Cm

)

+ 0.5 log |A(n)|
2 .

(21)

The estimation ofW(n) is an iterative procedure. Matrices
A(n) andb(n) have to be correctly initialized first, e.g.A(n)

can be chosen as a diagonal matrix with ones on the diagonal
andb(n) can be initialized as a zero vector. The estimation ends
when the change in parameters of transformation matrices is
small enough (about 20 iterations are sufficient [8]).

3. Similar components clustering
The benefit of MLLR like methods is given by the possibility to
cluster similar parameters (mixture components) of the model.
Many clustering methods were already developed and success-
fully tested [9]. The number of clusters depends on the amount
of adaption data, which is in our case a-priori unknown. Hence,
hierarchical clustering approach, where the number of classes is
established when all the data were introduced, is most suitable.
Very common hierarchical methods utilized in the adaptation
are regression trees (RT). RT is designed in advance, but the
exact number of final classes will be determined according to
the amount of adaptation data. An example is depicted in Fig-
ure 1. RT can be based e.g. upon phonetic knowledge [10] or
distances in the acoustic space [12]. In this work we focus on
the latter approach.

Th=700

C1

W1

C6C2 C3
C4

C5

C9C7
C10

C13

C8

C12C11

W2
W3

W4

W5

100 650

750

710 800

1510

2260

100 650

250750

3260

1000

1

2

3

4

D

Figure 1: Example of a binary regression tree. The numbers as-
signed to nodes are the actual occupation counts of nodes (clus-
ters). NodesC1 andC2 have occupations lesser then the occu-
pation thresholdTh = 700, therefore for all the components of
mixtures located inC1 andC2 will be used the transformation
defined for nodeC7. D denotes the depth in the tree.

3.1. Regression Tree (RT)

The model parameters, which are close in the acoustic space,
are clustered utizing a given criterion, e.g. Euclidean distance
as done in [12] or maximizing the likelihood of the adaptation
data as done in [11]. The construction of RT, considering a
HMM with output probabilities described by GMMs, can be
done as

• each of the final leaves (clusters) of the tree contains just
a single mixture component,

• leaves are merged together according to the Euclidean
distance of GMM means,
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Figure 2: An extension of the regression tree depicted in Fig-
ure 1, where an extra nodeC14 (sil-node) was added exclusively
for silence parameters of the HMM.

• finally, the root node containing all components from all
mixtures is obtained.

The final set of classes is established during the adaptation pro-
cess according to the amount of adaptation data in each of the
clusters (cluster occupation) in RT utilizing an empirical thresh-
old Th (see Figure 1). The amount of adaptation data in a clus-
ter is determined as the sum of all soft counts (defined in (3)) of
all mixtures belonging to this cluster. Hence, the occupation of
then − th clusterKn is given asoccup(n) =

∑

jm∈Kn
cjm.

The number of transformations equals the cardinality of the fi-
nal set of classes. If considering Figure 1 and the occupation
threshold of a cluster set toTh = 700, the final set would con-
tain five classesC3, C4, C7, C9, C12. Each of the transforma-
tion matrices is computed only from data aligning to mixtures
of the given class.

3.2. Adaptation of Silence

If regression trees based on Euclidean distance as defined in
Section 3.1 are used, the speech and silence segments usually
share the same cluster. For clarification, silence segments are
those parts in the acoustic signal with absence of the speaker’s
voice. In cases where only adaptation data containing small
amount of silence frames are available, a situation may occur
that the states of silence, presented in the HMM, are bended to-
ward the speech data. This can happen mainly when the chan-
nel of training data of the SI model and the channel of actual
speaker data significantly differ. Hence, the silence segments
can be more often recognized as speech, thus the error rates in-
crease. Generally, the speech and silence are so much different
that the idea to separate them is straightforward.

In order to solve the stated problem, anothersil-nodecon-
taining all the mixtures belonging to states in the HMM that
represent the silence has to be involved as depicted in Figure 2.
At first, all the HMM states related to silence are set apart (they
are associated to the sil-node) and the remaining set of states is
used to construct a regression tree based upon the rules specified
in the Section 3.1.

It should be mentioned that the adaptation is performed
only when sufficient amount of data is available for both silence
and speech parameters. Details will be discussed in Section 6.1.

4. Unsupervised Adaptation
In the case when the acoustic model is build upon a set of
HMMs, where each HMM represents an elementary linguistic



unit (e.g. monophone, triphone, syllable, etc.), a transcription
of adaptation utterances of spoken speech is ncessary. Such a
transcription has to be available before the adaptation process.
If a reference transcription is at hand (e.g. obtained by an anno-
tator) we speak about supervised adaptation. For an annotator,
it is intractable to assign a phonetic label to each frame at each
time. Usually, only beginning and end of a sentence are marked
and the transcription of the sentence has to be aligned automat-
ically (e.g. using Viterbi algorithm [4]).

In the case of unsupervised adaptation, transcriptions have
to be computed in the first pass of the recognition process uti-
lizing the not adapted SI model. Such a Recognition System
(RS) replaces the role of the annotator. Because RS does not
work perfectly, it is suitable to assign a Certainty Factor (CF) to
each of the transcriptions. CF for any particular word sequence
is extracted from the lattice and can be computed as in [13]. We
use only the best path in the lattice. Only the data which tran-
scriptions have high CF, greater than an empirically specified
threshold, are used for the adaptation. Still some problems may
occur. Even if the CF of a word is high, the boundaries (time
labels) of the word can be inaccurate, because of low values of
CF of neighborhood words. Hence, it is useful to take into ac-
count the left and right context of each word in the sense of CF.
We are seeking for a sequence of three words, where each of
them has a CF higher than the threshold and for adaptation we
consider only the middle one. As an alternative for sequence of
three words, mainly when such triplets occur only very rare, a
lattice representation of each utterance may be used [14].

5. Adaptation in On-line Recognition
In the on-line recognition an unknown person speech has to
be transcribed. At the beginning, a Speaker Independent (SI)
model is used. The effort is to utilize the increasing amount of
speaker utterances to improve the SI model using adaptation.
There are several issues concerning the on-line adaptation.

The reference transcriptions are unavailable, therefore the
unsupervised adaptation has to be employed (see Section 4).
These can be done as a parallel process, where two problems
are solved separately:

• recognition of the actual sentence,

• adaptation of the acoustic model according to the previ-
ous sentences, already recognized by RS.

Hence, the acoustic model is iteratively adapted so that the sub-
sequent recognition becomes more accurate.

Next important point is the time consumption. Acoustic
models involved in RS comprises huge amount of states with
output probabilities represented by GMMs with lots of mix-
tures. Thus, the modification of such an acoustic model is un-
reasonable. Much more preferable is to transform directly the
acoustic features, hence only a few transformation matrices has
to be stored. A method satisfying these requirements is e.g.
fMLLR introduced in Section 2.1.2 or their modifications pre-
sented in [15],[16].

Another question concerns the moment when transforma-
tion matrices should be updated again. Hence, when should be
the SI model adapted for the first time and when should it be
further updated. It is appropriate to wait until the increase of in-
formation is sufficient so that the newly formed transformation
matrices are well-conditioned and the new iteration reasonably
improves the recognition. The solution of the stated problem
will be given in Section 6.1.

Recognition
System

Adaptation
System

speaker

data transcription

SI model

TRN

Ready
To

Adapt

data transcription

Figure 3: Scheme of the adaptation process in the on-line recog-
nition. SImodel represents a speaker independent acoustic
model andTRN stands for a feature transformation that de-
pends on the actual speaker. The blockReadyToAdapt de-
cides when a new transformation have to be computed.

6. Experiments
6.1. System Description

The analogue input speech signal is digitized at 44.1 kHz sam-
pling rate and 16-bit resolution format. The aim of the front-
end processor is to convert continuous acoustic signal into a
sequence of feature vectors. We performed experiments with
MFCC and PLP parameterizations, see [17] for methodology.
The best results were achieved using 19 filters and 12 PLP cep-
stral coefficients with both delta and delta-delta sub-features.
Feature vectors are computed at the rate of 100 frames per sec-
ond.

The acoustic model was trained on 100 hours of parliament
speech records with manual transcriptions. We used 42 Czech
phonemes. As the number of Czech triphones is too large, pho-
netic decision trees were used to tie their states. The recognition
of Czech Parliament meetings works with 5 385 different HMM
states of a speaker and a gender independent acoustic model.
Note that only diagonal covariances are assumed.

The language models were trained on about 25M tokens
of transcriptions of normalized Czech Parliament meetings
(Chamber of Deputies only). The vocabulary size is almost 175
000 words including the names of parliament members in five
classes for different grammatical cases. Class-based 2-gram
language model was used for on-line recognition while con-
fidence factors were computed using class-based 3-gram lan-
guage model in real-time. The SRI Language Modeling Toolkit
[18] was used for training.

Our on-line system is represented by a feedback connection
of a Recognition System (RS) and an Adaptation System (AS),
both of them operate in parallel (see Fig. 3). We are using fM-
LLR adaptation approach as described in the Section 2.1.2. Pa-
rameters of HMM are divided into two sets – for silence and for
speech. Further, speech parameters are splitted using regression
tree (RT) proposed in Section 3 utilizing Euclidean distance and
occupation thresholdTh = 1000.

The process of the on-line adaptation is as follows. An input
speaker utterance is recognized using RS. At the beginning, the
RS is represented only by the SI model missing any information
about the actual speaker. The utterance and its output transcrip-
tion, with a Certainty Factor (CF) assigned to each word, are



used in AS to computie the adaptation statistics (see Section 2).
Just reliably transcribed data are used for adaptation. Thus, AS
utilizes only words that satisfy following constraints:

• the CF of such a word is greater then the pre-specified
thresholdTCF = 0.98,

• the confident of adjacent left and right words is at least
equal toTCF ,

for details see Section 4. Note that the recognition of upcom-
ing utterances is still running in parallel, whereas the adaptation
process is performed.

In our system two thresholds for two node occupations
(see Section 3.1) were set as silence and speech parame-
ters were considered separately. The first threshold for si-
lence parameters (sil-node – see Section 3.2) was set to
Tsil = 500. As the adaptation process was performed it-
eratively (see Section 5), the second thresholdTspeech, for
speech parameters, had to be updated after each adaptation.
The initial value of Tspeech, used for the first adaptation
pass, was chosen asTspeech(0) = 1000 and its further val-
ues were set according to the depth (D – see Figure 1) in
RT. HenceTspeech(k + 1) = Tspeech(k) ∗ (2Dact + 1), where
k = 1, . . . , K represents thek − th iteration andDact is the
actual depth in RT determined in dependence on the amount of
adaption data:

Dact = log2

∑

∀jm
cjm

Th
, (22)

wherecjm was defined in (3). When both thresholds (Tspeech

and Tsil) were reached, hence a sufficient amount of (tran-
scribed) adaptation data was accumulated (ReadyToAdapt =
True – see Figure 3), then the transformation matrices (TRNs)
have been (re)computed.

After first transformation matrices have been computed,
following utterances were recognized using the adapted model
(SI model + TRNs). Thus, the system (and output transcrip-
tions) become more accurate. New thresholdTspeech was set
and statistics were further accumulated till the next adaptation.
The iterative adaptation ended when the maximal occupation
of all possible nodes in RT was reached. We assume that no
following adaptation (with unchanged RT) would increase the
performance of the recognition system. However, in our tests
such a situation never happened (see Section 6.2).

For our experiments we have used Intel Core 2 Duo, 2.40
GHz and 3 GB RAM. The recognition ran on both processors
until the adaptation matrices were computed. In order to up-
date the transformation matrices one of the processors was used,
whereas the recognition was still running on the other processor.
The time consumption of the on-line recognition is measured
according to the real-time factor computed as

Treal =
time spent on recognition

time duration of the speech recording
. (23)

6.2. Test Data

The experiments were focused mainly on situations where low
amount of adaptation data is available. Two sets of testing data
were prepared. The Set No.1 contained 10 parliament speakers
with speech recorded directly from TV. Hence, same conditions
were preserved as for data used to train the acoustic model. The
Set No.2 contained another 10 speakers recorded in the office
with completely different operating conditions (mainly channel
dissimilarity) than training data. In both sets, each speaker was

system Corr[%] Acc[%]
SImodel 89.05 86.37
AdaptRT 89.49 87.31

AdaptSIL+RT 89.86 87.35

Table 1: Correctness (Corr)[%] and Accuracy (Acc)[%] of tran-
scribed words for set No.1.

system Corr[%] Acc[%]
SImodel 71.63 64.37
AdaptRT 76.99 72.40

AdaptSIL+RT 76.98 72.27

Table 2: Correctness (Corr)[%] and Accuracy (Acc)[%] of tran-
scribed words for set No.2.

represented by 5-8 minutes of utterances. The adaptation pro-
cess was iterative one (see Section 6.1). Enough data for the first
adaptation pass were available after circa 3 minutes of speech
and for the second pass after circa 6 minutes. Note that at most
6 minutes of speech were used for adaptation (rather less).

6.3. Results

The results of the experiment on set No.1, No.2 are shown in
Table 1 and Table 2, respectively. The accuracy and correct-
ness of the baseline system (recognition done utilizing only the
SI model) can be found in the first row. The other columns
contain results obtained by the system with the iterative adap-
tation using the fMLLR approach. The termsAdaptRT and
AdaptSIL+RT denote systems without and with separation of
speech and silence parameters of the HMM, respectively. In
comparison to the baseline system, the adaptation methods in-
crease both Correctness (Corr) and Accuracy (Acc) of recog-
nized words.

Important factor in the on-line recognition is the time con-
sumption (see (23)). We have measured the average time con-
sumption of the recognition system based upon

• SI model:Treal = 2.06,

• SI model + TRNs:Treal = 2.47.

In order to further reduce the real-time factor, computer with
more than two cores should be used.

7. Discussion
The results demonstrate improvement of the RS already for low
amount of adaptation data. As could be anticipated and was
proved by proposed experiments, the improvement in the recog-
nition is much more significant in the case when channels in
training and testing utterances differ (set No.2). Further, when
the special node (sil-node) for silence parameters is involved
(see Section 3.2), an slight improvement in the case of set No.1
can be observed. This is not the case for set No.2. However, be-
cause of the expected independence of silence and speech seg-
ments, the results remained basically unchanged.

8. Conclusion
In this paper methods for adaptation in task of on-line recog-
nition were presented. Linear transformation methods based on



maximum likelihood were discussed. In our system we have uti-
lized in advance the fMLLR approach. The clustering of similar
model components was divided into two separate tasks – speech
vs. silence parameters, and the regression tree was involved.
The on-line recognition demanded the unsupervised adaptation
approach using certainty factor. In description of our system
we assumed that there is no change in the speaker in the whole
process of recognition. Hence, the change of speaker identity
should be handled by the user. Such systems are well suited
e.g. to replace the court reporter. In the future work, it would be
convenient to extend the system with automatic speaker change
detection.
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