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Abstract
In the paper Factor Analysis (FA) and Nuisance Attribute
Projection (NAP) are reviewed, analyzed and compared.
Since nowadays FA become a part of most state-of-the-art
recognition systems (used e.g. in the concept of i-vectors
or PLDA models) it is of relevance to examine different
insights into the problem. NAP was chosen as a coun-
terpart to FA as an advanced PCA like method often uti-
lized in speaker recognition systems along with FA. It is
demonstrated how can be both FA and NAP expressed
as solutions of Least Squares (LS), the consequences of
the LS formulation are discussed, and it is shown in what
extent do solutions of NAP and FA overlap.
Index Terms: NAP, FA, PCA, least squares

1. Introduction
In last years Factor Analysis (FA) based techniques
gained on popularity. Progressive methods as Joint Fac-
tor Analysis (JFA) [1], closely related i-vectors [2] or
Probabilistic Linear Discriminant Analysis (PLDA) [3]
are all based on FA. FA was integrated to the task of
speaker recognition when supervectors (SVs), mostly
based on GMM parameters, were introduced. Since SVs
are of substantially high dimension methods to reduce
their dimension and/or bind the parameters in a super-
vecetor were requested. First methods dealing with di-
mensionality reduction in the sense of subspace estima-
tion were Nuisance Attribute Projection (NAP) [4] and
JFA [5]. While NAP was suited for Support Vector Ma-
chines (SVMs) and addressed the channel compensation,
JFA was focusing also on the within-speaker variability.
Both within and between speaker subspaces were esti-
mated jointly at the same time. Lately, in [6] it was shown
how to decouple the estimation of both subspaces. At first
the between speaker subspace is estimated, and subse-
quently the within speaker covariance is decomposed and
the within speaker subspace is determined. We will focus
on the latter case when analyzing FA. In fact the estima-
tion algorithm used in JFA to handle supervectors differs
from the standard FA algorithm in that it puts weights on
distinct dimensional blocks of supervectors.

The paper aims to review NAP and FA, and show the
background of both methods in a different light. At first,

NAP will be described in Section 2 and presented as a
standard Least Squares (LS) problem. Rather than the
JFA algorithm the FA algorithm will be addressed in Sec-
tion 3 and it will also be related to LS. Finally, both ap-
proaches will be compared and the equivalence of NAP
and FA solutions will be analyzed in Section 4.

2. Nuisance attribute projection (NAP)
NAP was suited for the concept of SVMs and supervec-
tors [4]. It reduces the influence of the channel variability
projecting out the supervector dimensions that are mostly
vulnerable to changes of operating conditions. Lots of
speakers recorded in several operating conditions have
to be collected (several sessions of each speaker have to
be available). For each session h = 1, . . . ,Hs of each
speaker s = 1, . . . , S a D dimensional vector xsh is ex-
tracted (e.g. a supervector or an i-vector). Let Xs =
[xs1, . . . ,xsHs

] be the sth speaker’s data matrix with Hs

vectors ordered in columns, and let X = [X1, . . . ,XS ]
be the overall data matrix.

The objective function to be minimized, introduced in
[4], has the form

JNAP(P ) =
N−1∑
i=1

N∑
j=i+1

Wij ||P (xi − xj)||2 (1)

where N =
∑

sHs is the number of input vectors,W =
[Wij ] is a N × N symmetric matrix of zeros and ones,
Wij = 1 if both vectors xi and xj represent the same
speaker and Wij is zero otherwise, and P is a D × D
projection matrix of low rank Dp. The projection matrix
P will be assumed in the form

P = I − F⊥F T
⊥, (2)

where columns of the D × Dp matrix F⊥ span the sub-
space which we are going to project out, and in addi-
tion F T

⊥F⊥ = I . Thus, columns of F⊥ are orthonor-
mal, otherwise the projection matrix would have the form
P = I − F (F TF )−1F T (assuming that F has full col-
umn rank Dp, otherwise the inversion (F TF )−1 has to
be replaced by a generalized inversion [7]). Note that the
objective (1) does not depend on the choice of the base of
the subspace, it depends only on the subspace generated



by this base. Hence the orthonormal restriction does not
violate the generality of the solution of (1).

Equation (1) can be rewritten as

N−1∑
i=1

N∑
j=i+1

Wij ||P (xi − xj)||2 =

=

S∑
s=1

Ns−1∑
i=1

Ns∑
j=i+1

eT
ijX

T
sPXseij

=

S∑
s=1

tr(PXs(
∑
i,j

eije
T
ij)X

T
s )

= tr(P
S∑

s=1

HsXsJsX
T
s ) = tr(PXJXT), (3)

where properties P 2 = P , P = P T of the projection
matrix (2) were used, eij is a zero vector with +1 in it’s
ith entry and -1 in it’s jth entry (Xseij = xsi−xsj), and
Js =

∑
i,j eije

T
ij = IHs − 1/Hs11T, IHs is Hs × Hs

identity matrix, 1 is a vector of ones, and J is a block
diagonal matrix composed of blocks H1J1, . . . ,HSJS .
Realizing thatXsJsX

T
s =

∑Hs

h=1(xsh−x̄s)(xsh−x̄s)
T,

x̄s =
∑Hs

h=1 xsh is the covariance matrix of vectors in
Xs, the matrix CW = XJXT is in fact the weighted
sum of within covariances of each set Xs weighted ac-
cording to the number of vectors it contains. Thus, the
objective function (1) takes the form

JNAP(F ) = tr(PCW) = tr(CW)− tr(CF ), (4)

where CF = F T
⊥CWF⊥ is the within covariance after

projecting each xij onto the column-space of F⊥. The
criterion (4) is minimized when columns ofF⊥ are eigen-
vectors ofCW corresponding to highest eigenvalues – the
highest within variance (most vulnerable to changes) is
projected out.

2.1. NAP and least squares

To simplify following formulas let us assume that H =
H1 = . . . = HS and that the mean value x̄s was already
subtracted from each vector inXs, s = 1, . . . , S. Now

1/H JNAP = tr (PCW ) = tr

(
(I − F⊥F T

⊥)
N∑
i=1

xix
T
i

)
=
∑
i

tr
(
xT
i (I − F⊥F T

⊥)xi

)
=
∑
i

||(I − F⊥F T
⊥)xi||2 =

∑
i

||xi − F⊥F T
⊥xi||2

=
∑
i

||xi − F⊥zi||2, and zi = F T
⊥xi, (5)

hence F⊥zi is an orthogonal projection of xi onto the
column space of F⊥. Thus, JNAP can be solved also it-
eratively, an actual estimate of F⊥ is used to get projec-
tions zi and subsequently a Least Squares (LS) problem

is solved to get a new estimate of matrix F⊥. The iter-
ative procedure does not guarantee the orthogonality of
columns of F⊥, but we can use e.g. QR decomposition
after each iteration to make columns of F⊥ orthogonal
and to increase the robustness of the LS estimation algo-
rithm.

3. Factor analysis (FA)
FA is a latent linear Gaussian model of the form [8]

vi = Fyi + εi, (6)

where V = [v1, . . . ,vN ] is a matrix of input vectors of
dimension D which were normalized to zero mean be-
forehand. In FA an assumption is made that each vi may
be explained by some lowerDy dimensional latent repre-
sentation yi (Dy < D), which lies in a subspace spanned
by columns of F . TheD×Dy matrix F is also called the
factor loading matrix, entries of yi are denoted as factors,
and εi is some residual noise following Gaussian distri-
bution N (0,Σ) with zero mean and diagonal covariance
Σ. Since bothF , yi are unknown also the distribution for
yi has to be specified – it is given as a standard Gaussian
distribution N (0, I). Hence, it is obvious that both

p(vi) ∼ N (0,FF T + Σ) (7)

and p(vi|yi) ∼ N (Fyi,Σ) follow Gaussian distibution.
The model is found utilizing Expectation Maximiza-

tion (EM) algorithm in order to maximize (7). In the E-
step mean and covariance of each latent variable yi given
vi are evaluated using old values of F ,Σ:

Ψ = (F TΣ−1F + I)−1, (8)

E[yi] = ΨF TΣ−1vi, (9)

p(yi|vi) ∼ N (E[yi],Ψ), and subsequently F and Σ are
updated in the M-step:

F =

(
N∑
i=1

viE[yT
i ]

)(
N∑
i=1

E[yiy
T
i ]

)−1
, (10)

Σ = FΨF T +
1

N

N∑
i=1

(vi − v̂i)(vi − v̂i)T, (11)

where v̂i = FE[yi] ≈ Fyi is the reconstructed vector
vi, and E[yi] is in fact the MAP estimate of yi. Note
that E[yiy

T
i ] showing up in (10) is obtained realizing that

Ψ = E[yiy
T
i ] − E[yi]E[yT

i ]. From (11) it is easy to see
that the noise variance captures the residual variance and
in addition it grows also in regions where the covariance
of latent variables given observed vi is high.

An interesting property is that if the noise covariance
Σ is fixed (e.g. it is derived a-priori, and it is not updated
in each iteration), the FA training algorithm described in



this section leads to the same result as the FA training
utilizing the dataset Ṽ = [Σ−1/2v1, . . . ,Σ

−1/2vN ] with

Ψ̃ = (F̃ TF̃ + I)−1, E[ỹi] = Ψ̃F̃ Tṽi, (12)

yielding (up to some arbitrary rotation matrix R due
to Gaussionality assumptions) FR = Σ1/2F̃ , Ψ̃ =
RTΨR, and Ẽ[yi] = RTE[yi]. It is easy to see that

Σ−1/2vi = ṽi = F̃E[ỹi] =

= Σ−1/2FRRTΨRRTE[yi] = Σ−1/2FE[yi]. (13)

Such an observation may bring some additional compu-
tational savings when implementing a FA system. The
input dataset is normalized beforehand so that all the mul-
tiplications with Σ−1 in the FA update formulas will van-
ish.

3.1. FA and least squares

It is straightforward to show that minimizing the objec-
tive function

JFA(F ) =
1

2

N∑
i=1

||vi−FE[yi]||2+
N

2
tr(FΨF T), (14)

having E[yi] and Ψ fixed leads to the update formula
identical to (10). The formulation is known as the prob-
lem of regularized LS [9] and it brings a new insight into
the concept of FA. The iterative estimation of F consists
of two steps. At first actual F is used to get the mean and
the covariance of latent variables yi given vi, and subse-
quently new F is found solving the problem of regular-
ized LS (14). Note that the noise covariance Σ appears
only when evaluating E[yi] and Ψ, thus it alters only the
latent variables. Since (14) has to be minimized the sec-
ond term in (14) – the regularization term – is used to
push the directions in F , in which the covariance of la-
tent variables is high, toward zero. Thus, the rank of the
matrix F can decrease below Dy (assuming that the rank
of the sample covariance matrix is at least Dy).

4. FA and NAP
In previous sections it was shown how both NAP and FA
may be solved in terms of Least Squares (LS). Now we
are going to look on similarities and differences between
both approaches.

We will come out of conclusions made in [9], where it
was shown that generative model (6) with isotropic noise
covariance Σ = σ2I , which maximizes the likelihood (7)
of input data, is given by the eigenvalue decomposition of
the data covariance matrix. However we will use differ-
ent approach enabling more insight into the problematic.
Focusing on isotropic noise covariance formulas (8) and
(9) change to

Ψ = σ2(F TF + σ2I)−1,

E[yi] = (F TF + σ2I)−1F Tvi. (15)

Let us make a small diversion and let us adjust the
form of (14) utilizing the isotropic noise covariance. Let
us decompose F TF = QTDQ by SVD decomposition
so that QTQ = QQT = I , and since F TF is positive
semi-definiteD = [dii] is a diagonal matrix with dii ≥ 0.
For F⊥ = FQTD−1/2 we get F T

⊥F⊥ = I (columns of
F⊥ are orthonormal). For future use let

K1 =

[
d2ii + 2diiσ

2

(dii + σ2)2

]
, K2 =

[
diiσ

2

dii + σ2

]
(16)

be diagonal positive semi-definite Dy ×Dy matrices. At
first, let us focus on the second term in (14). Substituting
for Ψ we get

tr(FΨF T) = tr(σ2(QTDQ+ σ2I)−1QTDQ)

= tr(σ2(D + σ2I)−1D) = tr(K2). (17)

Thus, the term tr(FΨF T) influences only the scaling of
directions in the latent space. Before the rearrangement
of the first term in (14) note that

(I − F (F TF + σ2I)−1F T)2 = I − F⊥K1F
T
⊥. (18)

Back to the first term in (14), substituting for E[yi]:∑
i

||vi − FE[yi]||2 =

=
∑
i

tr
(
vi(I − F (F TF + σ2I)−1F T)2vT

i

)
= tr(

∑
i

viv
T
i )− tr(K1

∑
i

F T
⊥viv

T
i F⊥)

= N tr(CV )−N tr(K1CF ), (19)

where CV = 1/N
∑

i viv
T
i , CF = F T

⊥CV F⊥ is the
covariance of the projected dataset V . And finally, com-
bining both we get

2

N
JFA(F⊥,D) = tr(CV )− tr(K1CF −K2). (20)

Note that K1 and K2 depend on the diagonal matrix
D, and CF depends on F⊥. Examining (20), Figure 1
and Figure 2 we can make conclusions on the role ofK1

and K2. At first, note that the diagonal elements of K1

are lower and upper bounded by 0 and 1, respectively,
whereas diagonal elements ofK2 are only lower bounded
by 0 (recall that dii ≥ 0, σ2 ≥ 0). If σ2 >> dii than the
corresponding directions do not contribute to minimize
JFA, and the task of K2 is to completely eliminate these
directions.

Since K1, K2 perform only scaling of directions, in
order to minimize (20) at first tr(CF ) has to be maxi-
mized. This is done when columns of F⊥ are formed
by eigenvectors of CV corresponding to highest eigen-
values, see Section 2. A useful side effect is that CF

becomes diagonal with Dy highest eigenvalues λi of
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Figure 1: The dependency of diagonal entries of K1 on
different values of dii and σ2.
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Figure 2: The dependency of diagonal entries of K2 on
different values of dii and σ2.

CV on its diagonal. To find D one has to maximize
tr(K1CF −K2):

∂

∂dii

Dy∑
i=1

d2ii + 2diiσ
2

(dii + σ2)2
λi −

diiσ
2

dii + σ2
= 0. (21)

After taking the derivative we get dii = 2λi − σ2, D
is given by eigenvalues of CV . Since dii ≥ 0 condition
dii = 0 if λi ≤ σ2/2 has to be introduced, which is in
accordance with previous discussion on the role ofK2.

Now let us replace the general dataset V with the
dataset X from Section 2, where vectors xsh were al-
ready normalized to zero mean, and the covariance ma-
trix CV with the within covariance matrix 1/NCW uti-
lized in NAP. This means that the latent variables yi will
now describe the channel/session space. Recall that in the
case of NAP the solution is also given by the eigenvalue
decomposition of CW, thus if the noise model in FA is
isotropic the solutions (more precisely the estimated sub-
spaces) for NAP and FA become identical. However, cri-
teria JNAP and JFA will still differ in some extent (K1 and
K2). Recall that in the case of NAP we had (rewriting
(4)):

1

N
JNAP(F ) = tr(CW)− tr(CF ). (22)

If σ2 = 0 than K1 = I , K2 = 0 and both criteria be-
come equivalent. The same is true if we put an orthonor-
mal restriction on columns of F , hence F TF = QTIQ
and dii = 1. Now, both K1 = (1 + 2σ2)/(1 + σ2)2

and K2 = σ2/(1 + 2σ2) become constants independent
on the choice of F , and JFA = α1JNAP + α2 becomes a
scaled version of JNAP for some constants α1, α2. Other-
wise, the FA criterion does incorporate also the influence
of noise, thus the value of the criterion differs from JNAP
even if the resulting subspaces are identical.

It should be stated that the previous discussion can be
used also when comparing Principal Component Analy-
sis (PCA) and FA. The only difference between NAP and
PCA is that PCA takes any data covariance matrix and
performs the eigenvalue decomposition, whereas NAP re-
quires within class covariance matrix.

To get an idea what is going on when the noise covari-
ance Σ is diagonal we can turn to (12). Hence, at first the
input data are rescaled according to the given covariance
matrix Σ (the feature space is adjusted to promote dimen-
sions with low amount of noise), and subsequently the
previous discussion can be followed assuming σ2 = 1.

5. Conclusions
Factor Analysis and Nuisance Attribute Projection were
analyzed and compared. We have shown in the light of
least squares when NAP and FA criteria as well as their
solutions (generated subspaces) equal, and how does FA
in addition treat noise.

6. Acknowledgements
This work was supported by the Grant Agency of the
Czech Republic under Project GAČR P103/12/G084.
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