
On Complementarity of State-of-the-art Speaker Recognition Systems
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Abstract— In this paper recent methods used in the task of
Speaker Recognition (SR) are reviewed and their complementarity
is analysed. At first, methods based on Supervectors (SVs) related
to Gaussian Mixture Models (GMMs) and Support Vector Machines
(SVMs) used as a discriminative model are described along with the
Nuisance Attribute Projection (NAP). NAP was proposed to suppress
undesirable influences of high channel variabilities between several
sessions of a speaker. Next, recent methods focusing on the extraction
of so called i-vectors (low dimensional representations of GMM based
SVs) are discussed. The space in which i-vectors lie is denoted the
Total Variability Space (TVS) since it contains both between-speaker
and session/channel variabilities. Once i-vectors have been extracted
a Probabilistic Linear Discriminant Analysis (PLDA) model is trained
in the TVS. In the training phase of PLDA the TVS is decomposed to
a channel and a speaker subspace, hence each i-vector is supposed
to be composed from a speaker identity component and a channel
component. The complementarity of PLDA and SVM based modelling
techniques is examined utilizing the linear logistic regression as a
fusion tool used to combine the verification scores of individual
systems leading to significant reductions in error rates of the SR
system. The results are presented on the NIST SRE 2008 and NIST
SRE 2010 corpora.
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I. INTRODUCTION

Gaussian Mixture Models (GMMs) introduced in [1] dom-
inated the task of Speaker Recognition (SR) for more than
a decade. Nowadays, GMMs play still an important role
in the state-of-the-art speaker recognition systems, however
they are used mainly to delimit and split up the feature
space according to a level of significance, and to extract data
statistics related to distinct parts of the feature space. This
is done via estimation of an Universal Background Model
(UBM) comprising many GMM components and trained on a
huge amount of development data. All the acoustic conditions
in which the system will be used should be covered.

Subsequently, given an UBM, statistics of extracted feature
vectors of a speaker related to distinct parts of the feature space
are estimated, and a Supervector (SV) formed by concatena-
tion of statistics from different parts of the space (related to
individual Gaussians in the UBM) is formed yielding a SV of
substantially high dimension. Methods of SV extraction will
be discussed in Section III.

Simultaneously two techniques to handle the high dimen-
sional SVs were proposed. The first was based on Support Vec-
tor Machine (SVM) as a discriminative trainer [2], which has
good generalization properties and is well suited for the task of
modelling when only a few (in the case of SVs often only one)

example/vectors of a class/speaker are available. Since both
generative (UBM/GMM) and discriminative (SVM) modelling
are utilized the techniques comprising GMM based SVs and
SVMs are also known as hybrid modelling. The concept of
SVs and SVM was further extended by the Nuisance Attribute
Projection (NAP) [3], which is used to suppress undesirable
channel variabilities between sessions of one speaker and will
be described in Section IV.

The second technique was based on Factor Analysis (FA)
and generative modelling. The idea was that since the di-
mensionality of SVs is in comparison with the number of
development speakers very high, many dimensions have to
be correlated with each other. Hence, the true information
has to lie in a much lower subspace. Moreover, since several
sessions of one speaker are available one could determine not
only the speaker identity subspace, but also the channel/session
subspace, which should be also of a lower dimension. These
principles were incorporated into a method called Joint Factor
Analysis (JFA) [4]. However, experiments in [5] have shown,
that the channel/session subspace does still contain some
substantial information concerning the identity of a speaker.
Therefore, JFA was extended to the concept of i-vectors
[6], where both subspaces are merged (they are no longer
distinguished in the model) forming a Total Variability Space
(TVS), see Section VI.

Independently on JFA a method called Probabilistic Linear
Discriminant Analysis (PLDA) has been developed in the
computer vision to tackle the problem of face recognition [7].
PLDA does a similar job as JFA, it decomposes the feature
space to a speaker and channel dependent subspaces, but rather
than GMM based SVs ordinary feature vectors are utilized
(to understand the difference see Section VI and Section VII,
and note the use of matrix Ns which does the weighting of
distinct dimensional blocks). Hence, PLDA is well suited as
a verification tool for an i-vector based system and will be
briefly discussed in Section VII.

The goal of this paper is to examine the complementarity
of methods based on SVM modeling, i-vector extraction
and PLDA modeling. For this purpose a linear fusion tool
will be utilized as described in Secction VIII. The results
found in Section VIII-C are presented utilizing recent Speaker
Recognition Evaluations (SREs) conducted by NIST.



II. UNIVERSAL BACKGROUND MODEL (UBM)

UBM used in the task of SR is a Gaussian Mixture Model
(GMM) trained on a huge amount of development data. It
should reflect the acoustic conditions of the environment, in
which the speaker recognition system is used. UBM consists
of a set of parameters λ = {ωm,µm,Cm}Mm=1, where M is
the number of Gaussians in the UBM, ωm, µm, Cm are the
weight, mean and covariance of the mth Gaussian, respectively.
The most important statistic related to the mth Gaussian of the
UBM and a set of Ts feature vectors Os = {ost}Ts

t=1 related
to the sth speaker is

γm(ost) =
ωmN (ost;µm,Cm)∑M

m=1 ωmN (ost;µm,Cm)
, (1)

where N (ost;µm,Cm) is the Gaussian probability density
function with mean µm and covariance Cm. For further use
let D = dim(ost) be the dimension of feature vectors.

III. SUPERVECTORS (SVS)

The term supervector (SV) used in SR is related to a high
dimensional vector obtained by the concatenation of several
vectors. Once the UBM was trained, supervectors

bs =

Ts∑
t=1

[
γ1(ost)o

T
st, . . . , γM (ost)o

T
st

]T
,

ns =

Ts∑
t=1

(
[γ1(ost), . . . , γM (ost)]

T ⊗ 1D

)
, (2)

can be extracted, both are of size DM×1, ⊗ is the Kronecker
product, 1D is a D dimensional vector of ones, and let m0 =
[µT

1,µ
T
2, . . . ,µ

T
M ]T be the SV constructed by the concatenation

of the UBM means.

A. GMM-mean Supervector (GSV)

GSV was proposed in [2], and it is composed of means of
an Maximum A-Posteriory (MAP) adapted UBM. GSV (and
also the MAP adaptation of UBM means) can be expressed as

ψs
GSV = τms + (1− τ)m0, (3)

ms = N−1s bs, (4)

where ms is the new Maximum Likelihood (ML) estimate
of m0 given the dataset Os, Ns is a diagonal matrix with
ns on its diagonal, and τ is an empirically set parameter
controlling the balance between UBM parameters m0 and the
new ML estimate ms. Note that for each speaker only one SV
is extracted no matter how many feature vectors are available.

B. Generalized Linear Discriminant Sequence (GLDS)

GLDS was proposed in [8]. It is based on a vector function
that transforms directly the feature vectors (UBM is not
involved). The SV has the form

ψs
GLDS =

1

T

Ts∑
t=1

ϕ(ost; k) , (5)

where ϕ(ost; k) represents a monomial expansion of a feature
vector ost up to the kth order, e.g. for a monomial expansion
of a D dimensional feature vector o = [o1, o2, . . . , oD]T up to
the second order we get

ϕ(o; k = 2) = [1, o1, . . . , oD, o
2
1, o1o2, . . . , o1oD, (6)

o22, o2o3, . . . , o2oD, o
2
3, . . . , o

2
D], (7)

where dim(ψGLDS) = ((D + k)!)(D! k! ). After substituting
(7) into (5) one can notice, that the mapping (5) comprises
first- and second-order moments – the means and correlations
of feature vectors [9]. Again data statistics are collected (as
in the case of GSV), however now also statistics of higher
order may be acquired. E.g if only monomials up to order two
are required, the GLDS mapping is build from the mean and
concatenated rows of covariance matrix acquired assuming a
single component UBM/GMM. Note again that only one SV
is extracted for each speaker.

IV. NUISANCE ATTRIBUTE PROJECTION (NAP)

In cases when several recordings of a speaker are available,
recorded on distinct channels, the channel/session information
can be utilized in order to suppress high within-speaker
deviations [3].

The objective function minimized in NAP is given as

JNAP(P ) =

N−1∑
i=1

N∑
j=i+1

wij‖P (xi − xj)‖2, (8)

where xi is a SV of dimension Dx, N is the number of SVs
in the development set, wij = 1 if both xi and xj come
from the same speaker, and 0 otherwise. P = I − F⊥F T

⊥
is a projection matrix, F⊥ is a Dx ×Dc matrix of low rank
Dc, where Dc � Dx, columns of F⊥ are orthonormal, thus
F T
⊥F⊥ = I and they span the subspace that is going to be

projected out. It is easy to see that the properties of P are:
P 2 = P (P is idempotent) and P = P T (P is symmetric).
It can be shown [10] that the objective function (8) can be
expressed as

JNAP(P ) = tr(PCW) = tr(CW)− tr(F T
⊥CWF⊥), (9)

CW =

S∑
s=1

Hs

Hs∑
h=1

(xsh − x̄s)(xsh − x̄s)
T, (10)

x̄s =

Hs∑
h=1

xsh, (11)

where Hs is the number of session of speaker s, S is the num-
ber of speakers in the development set, andCW is the weighted
within-speaker covariance computed on the development set of
speakers. The objective (9) is minimized when columns of F⊥
are formed by eigenvectors of CW corresponding to the Dc

largest eigenvalues (highest variance is projected out).



V. SUPPORT VECTOR MACHINE (SVM)
SVM is a binary classifier, where the decision boundary

between two classes is given by a linear hyperplane and the
task is to find a separating hyperplane so that the margin
between the classes is maximized [11]. Whenever a decision of
a classification depends only on a dot product of two vectors,
the dot product can be replaced by a scalar kernel function
K(x1,x2), which has to satisfy certain restrictions called
Mercer’s conditions. These conditions specify requirements
under which the output of the kernel function can be thought
of as an output of a dot product of two vectors. Thus
K(x1,x2) = φ(x1)Tφ(x2), where φ(xi) is a vector function
that maps xi to some high dimensional vector (even of infinite
dimension). The SVM decision function can be written as

f(xi) =

L∑
n=1

αnynK(xn,xi) + q, (12)

and if the kernel function is linear K(xi,xj) = xT
ixj we get

f(xi) =

(
L∑

n=1

αnynx
T
n

)
xi + q = wTxi + q, (13)

where L is the number of support vectors, which combination
(not necessary linear) forms the boundary, q is an offset,
αn > 0, L and q are learned during the training process
of SVM, yn ∈ {−1, 1} are the class labels, and xi is
the vector which class pertinence has to be determined, e.g.
yi = sign f(xi). SVM is trained iteratively utilizing some
optimization algorithm [12]. Note that if kernel function is
linear only the normal vector w and offset q of the decision
boundary have to be stored, but if this is not the case all the
support vectors have to be stored and in the decision process
the kernel function has to be evaluated L times for each new
vector in question.

VI. EXTRACTION OF I-VECTORS

The concept of i-vectors is closely related to a very effective
technique called Joint Factor Analysis (JFA) introduced in
[4]. Both JFA and i-vectors work with supervectors from (2),
hence they are related to a UBM. JFA tries to find (preferably
distinct) subspaces responsible for most of the session and
speaker variabilities, whereas in the concept of i-vectors these
variabilities are not distinguished, only an assumption is met
that they can be explained in an sufficient amount by variations
of low dimensional hidden variables called identity vectors (i-
vectors) [5].

The (generative) model has the form

ψs = m0 + Tws + ε, (14)
ws ∼ N (0, I), ε ∼ N (0,Σ) (15)

where ws is the Dw dimensional i-vector following standard
normal distribution extracted from feature vectors of the sth

speaker, T is the total variability space matrix of size DM ×
Dw, m0 is the mean vector of ψs (often mean supervector

of UBM is taken instead as a good approximation), and ε
is a random variable describing the residual noise following
normal distribution with zero mean and diagonal covariance Σ
(its diagonal blocks are often composed from the covariances
C1, . . . ,Cm of the UBM). Note that the matrix T should
encompass both the between-speaker and the within-speaker
(i.e. channel/session) variabilities.

A. Training

In order to train the i-vector extractor at first supervectors (2)
are extracted for each speaker and each session of a speaker. A
crucial assumption is made that each session of a speaker is in
fact another speaker, hence within- and between-covariance of
a speaker is not distinguished. Now, two steps are iterated in a
sequence until predetermined number of iterations is reached:

1) for each s use previous estimate of T to extract new
i-vector

ws = (I + T TΣ−1NsT )−1T TΣ−1b̄s, (16)

2) let Z =
(
I + T TΣ−1NsT

)−1
; use newly extracted

i-vectors to compute block-wise a new estimate of T

Tm =

(
S∑

s=1

b̄smw
T
s

)(
S∑

s=1

Nsm

(
wsw

T
s +Z

))−1
,

(17)
where Ns is a diagonal matrix with ns on its diagonal, b̄s =
bs − Nsm0 is the centred version of bs around the mean
m0, and the index m in Tm, b̄sm, nsm (and Nsm) refers to
blocks of T , b̄s, ns (and thus to Nsm) of sizes D × Dw,
D× 1, D× 1, respectively. Hence, T T = [T T

1 ,T
T
2 , . . . ,T

T
sM ],

b̄T
s = [b̄T

s1, b̄
T
s2, . . . , b̄

T
sM ] and nT

s = [nT
s1,n

T
s2, . . . ,n

T
sM ]. One

can update also Σ, for details see [13]. Note that for each
session of a speaker one i-vector is extracted. Moreover, the
training procedure is in fact the same as for parameters of a
model of Factor Analysis (FA) differing only in the presence
ofNs in estimation formulas (16), (17). IfNs would equal the
identity matrix I the training procedure would be identical to
the estimation procedure of parameters of a FA model, which
form is identical to (14).

VII. PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS
(PLDA)

PLDA was introduced in [7] for the task of face recognition
in the image processing. However, it is well suited also as
a verification tool working with i-vectors presented in the
previous section. The model is similar to JFA, it incorporates
the idea of within- and between-speaker spaces, but instead of
working with high dimensional supervectors (2) it can handle
the low dimensional i-vectors ws. Thus, while in the i-vector
extraction phase no distinction was made between the speaker
and the session space, PLDA incorporates such a knowledge
and constructs a new generative model in the total variability
space.



The generative PLDA model can be expressed as

wsh = mw + Fzs +Grsh + ε, (18)
ε ∼ N (0,S), (19)

zs, rsh ∼ N (0, I), (20)

where mw is the mean of wsh, columns of F span the
between-speaker space (speaker identity space), zs of dimen-
sion Dz are coordinates in this space and they do not change
across sessions of one speaker, columns of G span the channel
space, rsh of dimension Dr are the session dependent speaker
factors, and ε is a residual noise factor following normal
distribution with zero mean and diagonal covariance S. Both
latent variables zs, rsh follow standard normal distribution
and they are assumed to be independent. It is a common and
reasonable assumption that Dz, Dr < Dw and Dz+Dr ≈ Dw.

A. PLDA Training

In [7] following estimation algorithm of model parameters
F , G and S was proposed. Let

ŵs = [ws1 −mw,ws2 −mw, . . . ,wsHs −mw]
T
, (21)

ẑs = [zs, rs1, rs2, . . . , rsHs ]
T
, (22)

AHs =


F G 0 . . . 0
F 0 G . . . 0
...

...
...

. . .
...

F 0 0 . . . G

 , (23)

ε̂Hs
= [ε1, ε2, . . . , εHs

]
T
, (24)

Σ̂Hs
=


S 0 . . . 0
0 S . . . 0
...

...
. . .

...
0 0 . . . S

 , (25)

where ε̂ ∼ N (0, Σ̂Hs), yielding a system of equations for
each speaker, which can be written in a compact form as

ŵs = AHs ẑs + ε̂Hs . (26)

Note that AHs and Σ̂Hs depend on the number of sessions
Hs of a speaker, therefore their size changes whenever Hs

changes. Equation (26) is a standard Factor Analysis (FA)
problem, the estimation process is almost identical to the
estimation process described in Section VI-A with Ns = I ,
however some additional decompositions of matrices have to
be carried out in order to get F , G and S instead of AHs

and Σ̂Hs . The full description of the estimation algorithm is
out of the scope of this paper, for details see [7].

B. Verification

Once the PLDA model parameters F , G and S were
estimated the task is to assign a verification score to given
two i-vectors w1 and w2. For this purpose two hypotheses
are tested, namely
• hypotheses Hs: w1 and w2 share the same identity
• hypotheses Hd: the identity of w1 and w2 differs

The log-likelihood ratio is given as

LLR(w1,w2) = log
p(w1,w2|Hs)

p(w1|Hd)p(w2|Hd)
=

= logN
([

w1

w2

]
;

[
mw

mw

]
,

[
Cw CF

CF Cw

])
− logN

([
w1

w2

]
;

[
mw

mw

]
,

[
Cw 0
0 Cw

])
, (27)

where Cw = FF T +GGT + S and CF = FF T. Note that
in this verification scenario we do not care about the form
of the decomposition of w1 or w2 (latent variables zs, rsh
stay unknown), the question stated is whether the two vectors
share the same identity given the subspaces generated by F
and G. Hence two vectors can be compared in a very simple
and effective way.

VIII. EXPERIMENTS

In order to investigate the complementarity of SVM based
systems and i-vector based system, outputs (verification
scores) of these systems will be fused. For this purpose the
Logistic Linear Regression (LLR) from the FoCal tool kit
[14] will be utilized. Hence, the fused score scoreF(Os,Oq)
will be given as a linear combination of scores obtained from
individual systems:

scoreF(Os,Oq) = ξ1fGSV(Os,Oq) + ξ2fGLDS(Os,Oq)+

+ ξ3fiVEC+PLDA(Os,Oq) + ξ4, (28)

where fXY(Os,Oq) is the output (verification score) of system
XY given a set of feature vectors of each speakers s and q,
and ξ = [ξ1, . . . , ξ4] is the vector of fusion coefficients. Let
us summarize the main ideas and dissimilarities of methods
described in this paper:

1) i-vectors and PLDA model try to find a low dimensional
representation of a Supervector (SV) similar to GSV,
moreover they try to decompose the feature space into
speaker- and session-dependent parts

2) i-vectors and PLDA model are generative and do not
discriminate between speakers, whereas SVM as a dis-
criminative classifier does; note that even if PLDA is
a discriminative model it discriminates between the
speaker- and the channel-subspace

3) presented SVs incorporate different kind of information;
in the case of GSV vectors pointing to positions in the
feature space with increased concentration of feature
vectors are used; in the case of GLDS the covariance



and higher order moments of the whole speaker’s data
set are extracted

Therefore the complementarity of presented methods should
be preserved. The performance and complementarity of the
speaker recognition systems will be tested on the male tele-
phone conversation speech taken from Speaker Recognition
Evaluations (SREs) conducted by NIST, more precisely on
NIST SRE 2008 (NIST08) and NIST SRE 2010 (NIST10).
To train the Fusion Coefficients (FCs) data from NIST08 will
be utilized, and the learned FCs will be then used to fuse
outputs of systems trained for NIST10.

In NIST08 648 target speakers and 1535 test speakers were
present yielding 16 968 trials in total (short2-short3 trials1) to
be scored, and in the case of NIST10 1394 target speakers
and 2474 test speakers were given yielding 74 762 trials
in total (core-core trials2). The duration of all the test and
target recordings in both corpora was approximately 5 minutes
including the silence.

A. Feature Extraction

The feature extraction was based on Linear Frequency
Cepstral Coefficients (LFCCs), Hamming window of length
25 ms was used, the shift of the window was set to 10
ms, 25 triangular filter banks were spread linearly across the
frequency spectrum, and 20 LFCCs were extracted, delta coef-
ficients were added leading to a 40 dimensional feature vector.
Also the Feature Warping (FW) normalization procedure was
applied utilizing a sliding window of length 3 seconds. Just
before FW voice activity detection, based on detection of
energies in filter banks located in the frequency domain, was
carried out in order to discard non-speech frames. All the
feature vectors were at the end down-sampled by a factor of 2.

B. System Set-up

Development corpora NIST SRE 2004 (NIST04), NIST
SRE 2005 (NIST05), NIST SRE 2006 (NIST06), Switch-
board 1 Release 2 (SW1), Switchboard 2 Phase 3 (SW2),
Switchboard Cellular Audio Part 1 and Part 2 (SWC) and
Fisher English Training Speech Part 1 and Part 2 (FSH)
were used. The overall number of male speakers in NIST04,
NIST05, NIST06 was 465 with approximately 8 session for
each speaker, in SW1, SW2, SWC 659 male speaker with
approx. 11 sessions were present, and in FSH the number
of speakers was 1612 with at most 3 sessions each. The data
source of all the recordings was telephone conversation and the
duration of each recording including the silence was approx.
5 minute, but in FSH the length of recordings varied from 6
to 12 minutes. The summary is given in Table 1.

The number of Gaussians in the UBM was set to 1024. The
size of the Total Variability Space (TVS) matrix T was set to

1for details see http://www.itl.nist.gov/iad/mig/tests/
spk/2008/sre08_evalplan_release4.pdf

2for details see http://www.itl.nist.gov/iad/mig/tests/
spk/2010/NIST_SRE10_evalplan.r6.pdf

Table 1. Summary of number of recordings, average number of sessions and
number of speakers in distinct corpora.

male
corpus ID recordings sessions speakers

NIST04,05,06 3787 8 465
SW1 2342 11 211
SW2 2183 10 216
SWC 2707 12 232
FSH 4923 3 1612

overall 15942 - 2736

Table 2. Equal Error Rates (EERs) and values of minimum of the Decision
Cost Function (minDCF) for individual SR systems and their fusion. Best
results (lowest error rates) are acquired when outputs of all the systems are
fused. Note that this is true for both corpora NIST08 and NIST10.

NIST08 NIST10
EER [%]/minDCF EER [%]/minDCF

GSV-NAP-256 7.27/0.0343 7.68/0.0393
GLDS-NAP-64 8.21/0.0365 9.16/0.0430
iVEC+PLDA 7.48/0.0376 8.74/0.0470

F-SVM 6.65/0.0311 7.05/0.0377
F-GSV-PLDA 6.49/0.0313 7.05/0.0383

F-GLDS-PLDA 6.60/0.0324 7.68/0.0391
F-ALL 6.18/0.0300 6.74/0.0368

1024 ∗ 40 × 800, hence the latent dimension (dimension of
i-vectors) was Dw = 800. UBM was trained on all the devel-
opment corpora and so was the TVS matrix. The dimension of
the between-speaker subspace in the PLDA model was set to
Dz = 500 and the dimension of the session/channel space was
set to Dr = 500, thus both F and G were of size 800× 500.
In the training phase of the PLDA model the corpus FSH was
left out since maximum number of sessions per speaker was 3.

The dimension of supervector was dim (ψGSV) =
1024 ∗ 40 = 40960, and since in the case of GLDS mono-
mial expansion up to the order 3 was used dim (ψGLDS) =
((1024 + 3)!)( 1024! 3! ) = 12341. NAP matrix was trained
on SW1, SW2 and SWC since most session were available
for this corpora. The rank of F⊥ in the case of ψGSV was
Dc = 256, and since the dimension of ψGLDS is lower in
the case of GLDS Dc = 64. SVMTorch [12] was utilized
to train the SVM models, and only simple linear kernels
K = ψT

GSVψGSV, K = ψT
GLDSψGLDS were used. Since SVM

is a binary classifier we used the one-against-all approach,
hence all speakers from NIST04, NIST05, NIST06 were taken
as negative examples when training a SVM model of each
speaker. The SVM verification score was given as the output
of (13). Note that NAP was applied only to the population
of background SVs since linear kernel is in use and the NAP
projection matrix has the idempotent property P 2 = P (for
more details see Section IV).

C. Results

Results are given in Table 2 in terms of Equal Error Rate
(EER) and also the minimum of the Decision Cost Function
(minDCF) is reported. In order to compute the value of



Fig. 1. DET curve depicting the dependency of missing a target speaker
on the misclassification of a non-target speaker given a verification threshold.
Results for various systems are obtained on trials from NIST SRE 2008.

Fig. 2. DET curve depicting the dependency of missing a target speaker
on the misclassification of a non-target speaker given a verification threshold.
Results for various systems are obtained on trials from NIST SRE 2010. The
fusion coefficients were trained on trials from NIST SRE 2008.

minDCF the cost of missing a target was set to 10, the cost
of the false alarm was set to 1, and the probability of seeing
a true trial was set to 0.01. These values are adopted from the
NIST SRE 2008.

At first error rates for all three individual systems are given,
F-SVM stands for the fusion of GLDS and GSV system, and
F-ALL is the fusion of all three systems. Each fusion performs
better than an individual system, but the lowest error rates
are acquired when all three systems are fused. In Figure 1
and Figure 2 the Detection Error Trade-off (DET) curves are
shown. Note that the fused system F-ALL behaves best along
most of the curve, thus for each value of the verification
threshold.

IX. CONCLUSIONS

Recent state-of-the-art methods used in the task of speaker
recognition were presented. Complementarity of systems
based on SVM models, GLDS, GSV supervectors, i-vectors
extraction and PLDA modelling in the total variability space
was analysed utilizing the linear logistic regression as a
fusion tool. The decrease of error rates and increase in the
performance of the speaker recognition system composed from
mentioned subsystems was significant, hence the complemen-
tarity of reviewed techniques was proved.
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