
AN OPEN-SOURCE GPU-ACCELERATED FEATURE EXTRACTION TOOL

Josef Michálek and Jan Vaněk

Department of Cybernetics and New Technologies for the Information Society
University of West Bohemia, Plzen, Czech Republic

orcus@kky.zcu.cz, vanekyj@ntis.zcu.cz

ABSTRACT

An extraction of feature-vectors from speech audio signal is
a computationally intensive task. However, MFCC and PLP
features remain the most popular for more than a decade. We
made a GPU-accelerated implementation of the feature ex-
traction processing. The implementation produces identical
features as the reference Hidden Markov Toolkit (HTK) but in
a fraction of the elapsed time. The saved time can be invested
elsewhere and thus it can speed-up research. The implemen-
tation was developed in CUDA which supports NVidia GPUs
only. So, we added an Open-CL implementation to support
any current GPU. The project is an open-source package, thus
research community can modify or adapt the implementation
to their needs.

1. INTRODUCTION

GPU devices are highly parallel multi-core systems allow-
ing an efficient processing of large blocks of data. A using
of GPU-acceleration of numerically intensive algorithms be-
comes popular because GPUs power and energy efficiency
grow fast in contrast with CPUs. Currently, an open GPU
computing platform - OpenCL - is supported by all GPU ven-
dors [1]. However, Nvidia CUDA platform is still popular for
its debugging and profiling ability, and available libraries [2].

The GPU-acceleration was successfully applied in the
speech processing field also. An algorithm to evaluate acous-
tic model probabilities was presented in [3]. Even an entire
GPU-accelerated speech recognition system was described in
[4]. GPU FFT libraries from many sources are also available
and they can make a base of the feature processing [5], [6].

Our implementation is focused on an off-line processing
of very large data sets. With off-line constrains, all the opti-
mization techniques can be utilized and the final performance
is better. The implementation details are described in the next
Section 2. The last Section 3 shows elapsed times for var-
ious scenarios in comparison with the well-known speech-
processing standard - HTK [7] and with a popular open source
tool openSmile [10].

This research was supported by the Grant Agency of the Czech Republic,
project No. GAČR GBP103/12/G084.

2. HIGH PERFORMANCE GPU IMPLEMENTATION

The general purpose GPU programming is very specific. A
programmer should perfectly understand the programming
model and GPU hardware abilities. Following of the opti-
mization guides is necessary [8], [9]. However, it is often not
enough to get the high-performance implementation. An al-
gorithm can be implemented in various ways, but only a few
of them achieve a high performance. In this section, we have
described the implementation that gives the best performance.
The individual algorithm steps are illustrated on Figure 1.

2.1. MFCC

2.1.1. Segmentation

The first step of MFCC calculation is a dividing samples into
frames and an applying window function on each frame.

Frames overlap each other, so simple memory copy can-
not be used. Two approaches were tested:

1. Copying each frame separately from the host memory
to the correct position in the device memory.

2. Copying all input data into a temporary buffer in the de-
vice memory and executing a custom kernel to segment
data into the frames.

The second approach turned out to be faster. Even though,
it copies each frame twice. Only one memory transaction be-
tween host and device is the key difference.

The frame length is rounded up to the closest power of 2
and padded with zeros for faster processing of the next steps
of the MFCC calculation.

The kernel that segments data into the frames was also
modified to apply a window function on each frame. The
window function values are stored in the global device mem-
ory and copied to the fast shared on-chip device memory at
the beginning of the kernel. This eliminates redundant reads
from the global memory and speeds up execution.

2.1.2. Fourier Transform

Next step is calculating the power spectrum of each frame.



Input

Segmentation

FFT

Transposition

Mel filters

DCT

Delta

Normalization

Output

(a) MFCC

Input

Segmentation

FFT

Transposition

Filters

LPC

Cepstrum

Delta

Normalization

Output

(b) PLP

Fig. 1. Block diagram of implemented methods

The Fourier transform is calculated using CUFFT li-
brary and its implementation of the FFT algorithm in the
CUDA variant. The AMD FFT implementation is used in
the OpenCL case. These libraries use several optimizations
and the performance peak is obtained if the length of input
data is power of 2. For a real input of length N , CUFFT re-
turns complex data of length N/2+1. The rest of the Fourier
coefficients can be calculated from these. Because only mag-
nitude is needed, sign of imaginary part of coefficients is not
important and a code branching can be avoided.

A custom kernel was written to calculate the magnitude
of the complex Fourier coefficients. This power spectrum is
then stored into the device memory in transposed order which
enables a fast coalesced access in the mel-filter-bank kernel.

2.1.3. Mel Filter Bank

Applying the mel-filter-bank means calculating discrete con-
volution of the filter function and the power spectrum for each
filter. This operation can be easily implemented using matrix

multiplication, where rows of the left matrix are input frames
and columns of the right matrix contain the filter function val-
ues for the individual filters. Because the majority of such
filter matrix is filled with zeros, this approach leads to waste
memory throughput, where zeros are read and written, and
also redundant instructions.

To omit the junk computations and memory transfers, we
wrote an optimized kernel to apply mel-filter-bank. Each
frame is processed by one thread. Threads read the input data
in order from the first to the last one, multiply the data by the
filter function value and add the result to a register. When the
end of the filter is reached, the accumulated value in the regis-
ter is equal to value of the particular mel-filter. Logarithm of
this value is then written into an output buffer. Because only
two filters overlap at one point, only two registers are needed
for this calculation. The filter function values are stored in a
matrix, which is generated during program initialization.

Data is stored in the device memory frame by frame and
it would lead to slow uncoalesced access in this kernel. From
that reason, the power spectrum is transposed before the mel-
filter-bank kernel is executed.

2.1.4. DCT

The last step in the MFCC calculation is decorrelation. Our
implementation uses type-II DCT.

A matrix of the DCT coefficients is constructed during the
program initialization and DCT of every frame is calculated
by multiplying all data by the DCT matrix.

The matrix multiplication is done using CUBLAS library
or AMD OpenCL library. These libraries allow to specify if
each matrix should be read transposed or not. For our input
data, the multiplication was the fastest if both matrices were
transposed. Transposing output of the mel-filter-bank kernel
also ensures coalesced writes to memory.

2.1.5. Delta Coefficients

Delta coefficients for one frame are computed from its several
neighboring frames. It means, that the input data must be
read several times to calculate the delta coefficients. Since
the input data are in the global memory, the read operation
can be costly and it should be avoided if possible.

Our implementation calculates the delta coefficients in
blocks with a predefined size. The block of the input data
is copied into shared memory and all subsequent calculations
on this block use only data in the shared memory and not in
the global memory. Only the overlapping block boundaries
data which are needed to calculate the delta coefficients are
read twice.

Acceleration (delta-delta) coefficients are calculated us-
ing the same kernel, only executed on the delta coefficients.



2.1.6. Normalization

Our implementation supports several normalization types.
Data characteristics, like mean or variance, must be gathered
prior to normalization itself for some of them.

The solution using two kernels turned out to be the fastest
one. Input data are divided into specific number of blocks and
the first kernel gathers characteristics for such blocks. The
first kernel results are then merged by the second kernel.

Another kernel is then executed to do the normalization
itself. It copies required data characteristics to the shared
memory to minimize global memory reads and performs an
in-place normalization.

2.2. PLP

PLP speech analysis consists of several parts. Some of
them are identical to MFCC. Segmentation, Fourier trans-
form, delta coefficients and normalization is implemented the
same way as in the MFCC case. PLP uses power spectrum
squared right after FFT that is only an exception.

2.2.1. Filter Bank

Filters used in PLP have different shape than those used in
MFCC, but filtration itself is done the same way.

Many filters overlap at one point, so the same approach as
in mel-filtering cannot be used. Filters are stored in a matrix,
where each row represents particular filters. We wrote a ker-
nel that multiplies the input data by this filter matrix. Because
filters occupy only minor portion of the matrix, special care
is taken to loop only over significant values during the matrix
multiplication.

After the filter value is calculated, it is raised by the expo-
nent of 0.3 and written into the output buffer.

2.2.2. LPC

To calculate linear prediction coefficients, one musts get au-
tocorrelation coefficients firstly. These can be calculated as
a linear combination of the filter values from the last step.
In our implementation, this is done using CUBLAS or AMD
library. A matrix is constructed during the program initial-
ization and the filter values are multiplied by the matrix. The
result of this operation is a matrix of autocorrelation coeffi-
cients with each row corresponding to the particular frame.

Then, we can apply Levinson-Durbin algorithm to calcu-
late linear prediction coefficients. This algorithm is recursive
and cannot be easily parallelized. Therefore, each frame is
processed by one thread. Input data is organized in such a
way, that the coalesced access occurs as often as possible and
threads in warps do not diverge.

Algorithm uses some output data to calculate other out-
put data and this leads to too many global memory accesses.
Therefore, all output data is saved into the shared memory and

they are flushed into the global memory at the end of calcula-
tions only. An all-pole model order is usually small enough to
fit all linear prediction coefficients into the shared memory. If
there is not enough space, a fallback kernel is executed, which
operates only with the global memory.

2.2.3. Cepstral Coefficients

Cepstral coefficients represent the output of our implementa-
tion. They are calculated from linear prediction coefficients
using another recursive algorithm. The same approach as in
the LPC calculation was chosen, where all the output data re-
sides in the shared memory as long as possible and they are
flushed into the global memory when they are not needed any-
more.

3. RESULTS

3.1. Experiment Setup

HTK was chosen as a reference implementation of MFCC and
PLP. The same setup was used also for openSMILE (marked
as oS in tables bellow).

The feature processing implementation was tested on sev-
eral data sets, each 10 hours long. Input data was sampled
at 8 kHz and 44 kHz to show processing performance on the
two common sample rates, telephone and audio CD quality.

Tests were also run on input sound files of variable length.
We select two categories. Lengths between 10-20 seconds are
marked as short files and 5-10 minutes for long files.

All tests were performed on system with following con-
figuration:

• CPU: Intel Core 2 Quad Q6600

• Motherboard: Asus P5Q-E

• GPU: NVidia GTX 660

• SSD: Samsung SSD 830 256 GB

• HDD: Seagate Barracuda ST2000DM001

The same input and output drive is used for test setups
HDD to HDD and SSD to SSD. Storage device speed was
also limited due to motherboard supporting only SATA II.

MFCC configuration details:

• Window size: 20 ms

• Window overlap: 10 ms

• Filter count: 15 for 8 kHz, 25 for 44 kHz

• Output cepstral coefficients: 13 including 0’th

• Delta and acceleration window size: 3

PLP configuration details:



Table 1. MFCC parameterization time in seconds
HDD → HDD SSD → SSD SSD → HDD HDD → SSD

Input HTK oS Afet HTK oS Afet HTK oS Afet HTK oS Afet

Short 8 kHz 143.2 347.3 37.5 109.2 346.4 28.6 61.1 346.5 33.9 137.1 344.6 29.7
Long 8 kHz 109.3 282.9 6.1 88.6 281.9 6.0 88.6 283.4 6.5 97.5 283.2 6.1

Short 44 kHz 364.6 998.2 172.3 273.8 1002.5 57.1 275.3 997.1 63.1 336.7 1001.0 109.1
Long 44 kHz 272.2 875.7 46.8 252.6 875.1 28.9 254.2 874.2 28.4 266.6 873.9 37.9

Table 2. PLP parameterization time in seconds
HDD → HDD SSD → SSD SSD → HDD HDD → SSD

Input HTK oS Afet HTK oS Afet HTK oS Afet HTK oS Afet

Short 8 kHz 108.2 361.5 36.6 76.1 363.3 29.9 43.5 360.4 34.6 101.6 358.6 30.4
Long 8 kHz 82.8 293.8 7.1 59.8 299.0 7.3 59.1 289.4 7.3 68.1 289.5 7.0

Short 44 kHz 298.8 1008.9 175.7 200.0 1012.7 62.0 202.7 1007.1 70.3 255.5 1008.2 120.3
Long 44 kHz 201.5 889.6 49.5 183.0 893.1 31.7 183.6 886.9 31.0 198.6 888.0 40.5

Data processing

6.8%

Other

93.2%

(a) Application overview

Segmentation

15.0%

FFT

26.9%

Transposition

17.5%
Mel filter bank

6.9% DCT (3.5%)

Delta coef. (3.8%)

Normalization

26.4%

(b) Data processing

Fig. 2. Time spent in various program sections for MFCC (Long 8kHz, from HDD to HDD)

Data processing

9.6%

Other

90.4%

(a) Application overview

Segmentation

11.5%

FFT
19.0%

Transposition

12.0%

Filter bank

24.9%

LPC
9.6%

Cepstral coef. (3.3%)

Delta coef. (2.8%)

Normalization

17.0%

(b) Data processing

Fig. 3. Time spent in various program sections for PLP (Long 8kHz, from HDD to HDD)



• Window size: 20 ms

• Window overlap: 10 ms

• Filter count: 15 for 8 kHz, 25 for 44 kHz plus 2 border
filters

• All-pole model order: 12

• Output cepstral coefficients: 13 including 0’th

• Delta and acceleration window size: 3

Output features were normalized to zero mean, matching
Z in HTK’s parameter TARGETKIND.

Duration of program execution was measured and all the
measured times are shown in Table 1 for MFCC and in Table
2 for PLP.

Only a small part of application elapsed time belongs to
the data processing, as shown in Figures 2a and 3a. The rest
of the elapsed time consists of the GPU device initialization,
including initialization of program memory structures, and
mainly disk I/O. Figures 2b and 3b show portions of time
spent in each part of implemented speech analysis methods.
The most of elapsed time is spent in disk I/O operations. It
illustrates a large difference between short and long files sce-
narios as well as the pie charts. Therefore, using of SSD
drives are recommended for the data processing. Even if the
data processing represents only a fraction of the total time, the
total speed-up is substantial. The speed-up varies between 3-
times and 18-times and it is dependent on the scenario. The
largest difference is in the Long 8kHz scenario. The total pro-
cessing performance varies between 0.00017 and 0.005 RTF.

4. CONCLUSION

The GPU-accelerated high-performance implementation of
MFCC and PLP features was described in this paper. The
implementation produces identical features as the reference
Hidden Markov Toolkit (HTK) but in a fraction of the elapsed
time even though the most of the elapsed time is spent on
I/O disk operations. A large set of tests was performed with
10 hours of audio data. The total speed-up varies between
3-times up to 18-times and even more with comparison to
slower openSMILE. In the best case, the 10 hours long au-
dio database was processed in 6 seconds. The project is an
open-source package, thus research community can use it
freely. Also, one can modifies or adapts the implementation.
The project is available at http://sourceforge.net/
projects/accelfeatextr/.

5. REFERENCES

[1] Khronos Group Std.: The OpenCL specification, version
1.1. http://www.khronos.org/registry/cl/
specs/opencl-1.1.pdf

[2] NVIDIA corp.: CUDA: NVIDIAs parallel com-
puting architecture. http://www.nvidia.co.uk/
object/what_is_cuda_new_uk.html

[3] Vanek J., Trmal, J., Psutka, J.V., Psutka, J.: Opti-
mized Acoustic Likelihoods Computation for NVIDIA
and ATI/AMD Graphics Processors. IEEE Transactions
on Audio, Speech and Language Processing, Vol. 20, 6,
pp. 1818-1828, 2012.

[4] Chong J., Gonina E., Yi Y., Keutzer K.: A Fully Data Par-
allel WFST-Based Large Vocabulary Continuous Speech
Recognition on a Graphics Processing Unit. In Proc. of
INTERSPEECH 2009, Brighton, United Kingdom.

[5] Moreland K., Angel E.: The FFT on a GPU. In Proc. of
SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware 2003 Proceedings, July 2003, pp. 112119.

[6] Govindaraju N., Lloyd B., Dotsenko Y., Smith B., Man-
ferdelli J.: High performance discrete Fourier transforms
on graphics processors. In Proc. ACM/IEEE conference
on Supercomputing 2008.

[7] S. Young et al.: The HTK Book (for HTK Version 3.4),
Cambridge, 2006.

[8] NVIDIA corp.: The CUDA C best practices guide,
version 3.2. NVIDIA http://developer.
download.nvidia.com/compute/cuda/
3_2_prod/toolkit/docs/CUDA_C_Best_
Practices_Guide.pdf

[9] AMD Company: AMD Accelerated Parallel Processing,
OpenCL Programming Guide. http://developer.
amd.com/gpu

[10] Florian Eyben, Martin Wllmer, Bjrn Schuller: openS-
MILE - The Munich Versatile and Fast Open-Source Au-
dio Feature Extractor. Proc. ACM Multimedia (MM),
ACM, Florence, Italy, ISBN 978-1-60558-933-6, pp.
1459-1462, 25.-29.10.2010.


