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Abstract

The present paper focuses on the unit selection

approach to speech synthesis, discussing drawbacks

mainly related to the current handling of target features

that basically results in the need of huge corpora. In

the paper there are outlined possible solutions based

on measuring (dis)similarity among prosodic patterns.

In the initial experiment, trying to verify the feasibility

of the proposed solution, the (dis)similarity of acous-

tic signal measured by different techniques is correlated

to perceived similarity estimate obtained from a large-

scale listening test.

1. Introduction

Although the unit selection speech synthesis approach

is still in the centre of researchers’ attention, there is

a notable shift towards HMM-based speech synthesis.

This is due to the fact that the HMM approach requires

much lower disc space and allows modifying speech ei-

ther to express different affective states (not only lim-

ited to emotions) or even speaker identity. On the other

hand, although HMM-approach based speech sounds

more smooth, speech generated by unit selection is still

generally evaluated as more natural, despite the occur-

rence of occasional glitches.

One of the biggest problems in the unit selection ap-

proach is the coverage of units in all different speaker

attitudes and prosodic styles (or even worse, affective

states). It is estimated in [1] that recording even several

hundred thousand sentences will not be enough to guar-

antee the full coverage of target feature combinations

thoroughly describing even basic prosody variability. As

this is never possible (nor meaningful) to achieve, unit

selection substitutes the units not matching target spec-

ification with the closest substitutes, where the “close-

ness” is defined by (usually) ad-hoc designed weights

for individual sub-features in target cost – the lower the

weight for a feature, the more easily a unit can be re-

placed by another unit.

The main problem, we believe, is that “traditional”

target cost aims to measure the suprasegmental fea-

tures (not only prosodic ones in general) of synthesised

speech, whereas speech units like diphones do not ex-

press (they cannot in principle) any suprasegmental be-

haviour at all. The target features assign (and fix) to

the units only those suprasegmental properties which the

units had when surrounded by their neighbours in the

corpus, creating a sequence long enough to express the

suprasegmental property. Target cost as used today is

set to strive, together with join cost, for putting the units

into the same suprasegmental surrounding as they orig-

inally had in the corpus, which is achieved when target

features match. This is the cause of the small coverage,

resulting in glitches when the surrounding did not exist

in the corpus.

As the individual units cannot express any supraseg-

mental feature, each unit can in general be used to

express a larger spectrum of different suprasegmental

patterns than the one in which the unit originally ex-

isted (unit synonymy/homonymy as introduced in [2]);

it is “only” necessary to arrange each unit in synthetic

speech to be surrounded by other appropriate units. How

to achieve this is, naturally, neither obvious nor easy, but

we suppose that the ability of measuring the perceptual

similarity of speech can help.

2. Why to Measure Perceptual Similarity

Let us describe here how the ability to measure percep-

tual similarity can be used to find those suprasegmen-

tal patterns1 in which a unit can be used (not all will

obviously be found in practise, as outlined later), while

the whole pattern still sounds natural. The idea is rather

simple: let us have a set of suprasegmental patterns pro-

1For the purposes of this research, suprasegmental prosodic pat-

tern can be defined as the sequence of speech units which constitutes

the perception of the rhythmic, intonation and phonation qualities of

speech.



nounced by speaker in his/her natural manner, and let

us somehow exchange units in the patterns. If the new

patterns sound perceptually similar to the their original

samples, the target properties of units can be extended

to reflect the new possibilities of the units use (units

homonymy). Or, looking at the idea from the other side,

the set of all thinkable and feasible target descriptions of

each unit in all their homonymous positions can be anal-

ysed in order to find such a minimal set of features that

gives much lower target cost to units in their homony-

mous positions (not necessarily always the same cost)

than it gives to other positions. The aim is to tune the se-

lection algorithm in such a way that a synthetic version

of a phrase in the corpus will be perceived as similar as

possible to the natural recording of that phrase (when no

unit from the original phrase is used, modelling a situa-

tion whereby the phrase was never recorded). Then we

can expect that the synthesised phrases not recorded in

the corpus will also sound similar to their representative

natural realisations (how a phrase would be pronounced

by the speaker if it were pronounced) in the same way

as the phrases used in the model situation sounded.

At the moment, we are considering the approach in-

spired by [3], where the phrases to synthesise are de-

composed into all the possible sequences of units of

various lengths (forming overlapped parallel sequences

leading from first phone to the last), each sequence is

“synthesised”2 using several instances of corresponding

units, and then analysed. We also propose to generate

every pattern from the corpus in many (all, in the ideal

case) “synthetic” realisations which are built by com-

bining a large number (all, ideally) of instances of a

large number (a sufficiently large number of those the

least overlapping) of decompositions. The consecutive

analysis of all those realisations which sound similar

to their natural paradigms (which implies that they all

sound natural as well) will be aimed to find the features

pertaining to the homonymy relation for those unit in-

stances which appear on various positions in the reali-

sations. Naturally, each unit instance must be used to

create a number of the realisations.

There is also an alternative possibility to generate

the “synthetic” realisations by replacing only one unit

in each natural pattern (instead of generating the whole

pattern), while the analysis of the patterns sounding

most similar to the natural ones can then be carried out

with the same aim as already described. Although it may

seem to lead to a simpler measure of similarity due to the

synthetic realisations being equal to the original except

for that one unit, we have not yet thoroughly analysed

the pros and cons of the individual approaches. There-

2meaning just concatenating unit sequences to create a given de-

composition

fore, the paper is rather focused on employing whole

patterns, while we expect that the experience we gained

with similarity measure is fairly general and adaptable

for both kinds of approaches, whichever will be chosen.

One of the problems with similarity perception on

speech signal is that it can only be meaningfully ob-

served and measured on acoustic stimuli shorter in du-

ration – contrary to images, speech is of varying na-

ture, passing sequentially through time (it is thus rather

impossible to authentically evaluate how similar two

variants of a whole phrase sound). Therefore, we de-

cided to consider prosodic patterns equal to prosodic

words3 (sometimes also called phonemic words), which

are considered the natural constituents of rhythmic and

prosodic structure in Czech [4] – something similar

determining such structures is likely to exist in many

other languages. Contrary to [3], each pattern (proso-

dic word) can then be processed independently, which

significantly reduces the number of decompositions ex-

amined. It may seem that independence in processing is

likely to lose the relation to the overall prosody of the

whole phrase, and, as a potential consequence, a basi-

cally random placement of prosodic patterns (regardless

of the fact that each individually sounds natural) through

the phrase during synthesis will cause conflicts between

the semantic content (given by phones) and the commu-

nication function (given by overall phrase intonation).

However, the position of patterns within the phrase can

be kept, incorporating position diversity into homonymy

description in cases when a unit instance is equally used

in different patterns within phrases.

Another problem with the approaches is the dan-

ger of combinatorial explosion. A reasonable, though

not optimal, solution is to examine the similarity to the

original pattern on a reasonable subset of possible “syn-

thetic” realisations of the pattern, chosen at random (as

proposed and discussed in [3]), and also to use massive

parallel or grid super computing.

3. The Measure of Perceptual Similarity

To formalise further reading, let A and B be realisa-

tions of two prosodic patterns (the signals of prosodic

words). Let then s̃(A, B) be their measurable similar-

ity computed on the basis of the measurable proper-

ties of the patterns (e.g. their signal), and let s(A, B)
be their perceived similarity representing unmeasurable

true reality how similarly A and B are perceived by

humans. For practical purposes, it is, however, sim-

pler to work in terms of dissimilarity – for measurable

dissimilarity it can be defined d̃(A, A) = 0, whereas

3To keep the generality of descriptions, the term pattern will still

be used in the paper, always referable to prosodic words, though.



s̃(A, A) → Z (whereZ can vaguely be defined as a pos-

itive number sufficiently large), and it can be considered

that d̃(A, B) ≈ Z − s̃(A, B). In the case of perceived

dissimilarity, the situation is not so straightforward, as

there is no guarantee of perceived dissimilarity being a

symmetric counterpart of the similarity. In [5] the au-

thors showed, using Tversky’s contrast model [6], that

people tend to attend more to common features of stim-

uli when evaluating similarity and to distinctive features

when evaluating difference. It may cause an object pair

to be evaluated as more similar and more different at

the same time, if compared to the same evaluation of

another pair. However, in the case of acoustic stimuli

comparison, we presume that the existence of a percep-

tually distinctive feature in compared patterns is likely to

imply higher dissimilarity than it would when similarity

is evaluated. Without evidence, human acoustic percep-

tion seems to be better in distinguishing difference (it is

easier) than in recognising similarity.

Let us now assume that there is a deterministic rela-

tion between the two dissimilarities

F : d(A, B) → d̃(A, B) ∀A, B (1)

thus having a data set with known behaviour of d, we

need to find such d̃ which is highly correlated with the

d. Then, we can use d̃ to estimate d for data not found in

the dataset. Simply said, this is the aim of our research.

3.1. Perceived Dissimilarity

We assumed in Equation (1) that we have d(A, B) at our

disposal. However, to be exact, what we only have is its

estimate obtained by listening tests4, averaging the dif-

ferent opinions (judgements) of people regarding what

sounds similar and what does not (and to what extent),

expecting that an “objectiveness” emerges on the basis

of cross-listener agreements.

To obtain the dissimilarity judgements, we carried

out listening tests described in detail in [9]. There were

63 listeners participating in them, each evaluating the

level of dissimilarity on 780 pairs combined from 17

prosodic words – if possible, the words were chosen so

that their variants covered different positions in phrases

and different melody patterns with at least two examples

in each. The signals of the prosodic words were obtained

from a female corpus recorded for our TTS system AR-

TIC [10], each word cut on boundaries given by auto-

matic segmentation, manually checked and faded in and

out to suppress the influence of surrounding words. The

listening tests were carried out through specially devel-

oped web application, and due to quite a large size of

4In [7, 8], the dissimilarity evaluation obtained in the form of a set

of listener responses is referred to judged dissimilarity.

the test, the participation (and correct finishing) was fi-

nancially well-rewarded. Each participant has been fa-

miliarised in detail with the purposes of the tests as well

as with the examples delimiting exemplary evaluations.

The levels of dissimilarity feeling were defined as

• clearly dissimilar – clear after the very first listen-

ing,

• dissimilar – quite close but still recognisably not

the same,

• quite similar/indistinguishable – being very close

even if differing after careful listening, or not

recognisable at all,

and the dissimilarity was requested to be evaluated for

all of the following aspects (resulting in 4 values)

• timing – difference in shortening or lengthening

rhythm through the prosodic words,

• intonation – difference in melody course or slope

through prosodic words (not overall pitch level,

though),

• voice colour + pitch level – difference in voice

colour and/or overall pitch level as such,

• overall feeling – difference as such, on all the

qualitative levels on which the acoustics is per-

ceived and a difference can be felt.

The categories were chosen on the basis of the listening

tests data analysis before the tests were started, as well

as of our intuitive reasoning, and they are aimed for the

study of the dissimilarity relations/prominences of dis-

tinctive prosodic constituents (e.g. by Tversky’s feature

contrast model [6]). Moreover, the variants of a proso-

dic word in all test stimuli were presented in the order

AB to one half of the listeners, and in order BA to the

other half (selected at random), to study the occurrences

of dissimilarity asymmetry [5, 7]. Nevertheless, neither

all evaluated aspects except the overall dissimilarity, nor

the asymmetry have been analysed yet.

To obtain a (dimensionless) value representing dis-

similarity d(A, B), ∀A, B, non-metric multidimen-

sional scaling (MDS) of the listening tests results was

carried out (all variants of one prosodic word analysed

at once, although independently for each of prosodic

words). This technique has been used for quite a long

time in cognitive science (so called geometric model [7],

assuming that a perceptual effect on stimuli is inversely

related to their distance in a n–dimensional space), but

for the first time it was used for synthetic speech quality

evaluation in [11]. MDS allows representing the stimuli

used for listeners’ dissimilarity judgements (individual

variants of a prosodic word) as points in n–dimensional

space which is configured so that more similarly per-

ceived stimuli pairs are placed closer together, while less



similar are placed further apart. The dissimilarity ma-

trix required by MDS was created in such a way that

each cell represented the number of times when a pair of

prosodic words was perceived as clearly dissimilar, plus

the half of the number of times when the pair was per-

ceived as dissimilar. The dimension n was chosen ad-

hoc to 3 for us to be able to visually analyse and interpret

stimuli distribution (not presented in this paper, though);

the optimality of dimension choice was not checked at

the time of writing. The dissimilarity estimate d(A, B)
can then simply be computed as Euclidean distance be-

tween stimuli A and B in the 3D space, although there is

some evidence that all the distance axioms valid in met-

ric space (when dissimilarity is assumed to be related to

a distance of judgements projected to an n–dimensional

space) are not necessarily always valid in the perception

[7, 6]. This is, however, not considered in this experi-

ment.

3.2. Measurable Dissimilarity

Let us expect, for the purposes of this paper, that the

perceived dissimilarity d(A, B) in Equation (1) matches

the dissimilarity really perceived by humans as closely

as possible. Now we need to find such a measure on sig-

nal which for each pair of prosodic patterns A, B (proso-

dic words) would return a value d̃(A, B) correlated with

d(A, B) as highly as possible.

In this first attempt, we have chosen pitch-

synchronous analysis of compared patterns, with mi-

crosegment of speech signal two pitch-periods long.

We can define measurable distance between microseg-

ments i and j as d̃ij(A, B) , where i = 1, 2, . . . , I and

j = 1, 2, . . . , J are the number of microsegments in pat-

terns A and B. Of course, as there is requirement for

d̃(A, A) = 0, it must be true that d̃i,j(A, A) = 0, ∀i =
j. In the present paper we have chosen the following

methods for d̃ij computing.

Waveform dissimilarity was motivated by the pre-

sumption that signal (dis)similarity is likely to imply

perceived (dis)similarity, at least for voiced phones.

Thus, to measure the dissimilarity on voiced microseg-

ments, cross-correlation defined by Equation (2) was ap-

plied on i, j pairs of von Hann window-weighted mi-

crosegments

d̃i,j(A, B) = 1−max
k




∑T

t Ai(t)Bj(t − k)√∑T

t A2
i (t)

∑T

t B2
j (t + k)





(2)

where t = 1, 2, . . . , T and k = 1, 2, . . . , T are the in-

dexes of samples in microsegments (of the same length).

The dissimilarity of unvoiced segments was estimated

simply by the ratio of the zero-crossing values of mi-

crosegments + their ratio of RMS, which led to values

also in 〈0, 1〉 interval

d̃i,j(A, B) = 1−0.5

∑T−1
t sgn(Ai(t)Ai(t + 1))

∑K−1
k sgn(Bj(k)Bj(k + 1))

−

−0.5

√
1
Ti

∑T

t Ai(t)2
√

1
Tj

∑K

k Bj(k)2

(3)

where sgn(a) = 1 iff a < 0 and sgn(a) = 0 iff a >= 0.

In the cases when d̃i,j(A, B) > 1 in (3), the new value is

inverted d̃i,j(A, B) = 1/d̃i,j(A, B). In the cases when

voiced and unvoiced segments would have to be com-

pared, cost 1 was returned immediately.

Singular value decomposition is an alternative ap-

proach employed in [12] for the measure of join cost.

The author showed that the singular value decomposi-

tion (SVD) can be considered as an alternative to mag-

nitude spectrum, which may not explicitly expose a fre-

quency, but it contains both power and phase informa-

tion “encoded” in the values. Moreover, compared to

the spectrum, it is also localised in time (using microseg-

ments) but global in scope, as all microsegments are de-

composed using the same transform kernel. The SVD of

signal matrix W is thus given by

W = USV T (4)

where W was created so that I microsegments of proso-

dic pattern A occupied rows 1, . . . , I , J microsegments

of prosodic pattern B occupied rows I+1, . . . , I+J and

so on, until all patterns of one prosodic word were added

– let us, for this experiment, define function F(B, j) re-

turning the index of row in W containing jth microseg-

ment of pattern B. The microsegments were von Hann’s

windowed signals, centred to row and surrounded by 0
if shorter than the number of columns in W (given by

the longest microsegment). The dimension of SVD was

here set to 10, as it was in [12]. The measurable distance

was then computed as

d̃i,j(A, B) = 1 − cos(ukS, ulS) =

= 1 −
ukS2uT

l

‖ ukS ‖ ‖ ulS ‖

(5)

where k = F(A, i) and l = F(B, j).
To evaluate the measurable dissimilarity of the

whole patterns, we have chosen symmetric DTW al-

gorithm with slight modification ensuring that only mi-

crosegments from the same phones, with overlap to 1/3



of the preceding and following phone allowed, are com-

pared together (both compared patterns are always dif-

ferent realisations of one prosodic word).

For the given microsegment distance measure, the

measurable dissimilarity is defined as

d̃(A, B) = min
{I(k),J (k),K}

(
K∑

k

(d̃I(k),J (k)(A, B) ∗ wk)

)

(6)

where I(k) and J (k) are functions warping kth step

in DTW into coordinates of compared microsegments

in the plane spanned by A and B pattens (i.e. I(k) =
1, . . . , I for k = 1, . . . , K), Weight wi,j is path penalty

encouraging diagonal steps wk = 1, I(k) 6= I(k−1)∧
J (k) 6= J (k − 1), and penalising steps up and right

wk = 2, I(k) = I(k − 1) ∨ J (k) = J (k − 1).

4. Results

For each pair of all the 780 pairwise combinations of

the variants built from the given 17 prosodic words,

the perceived dissimilarity d(A, B) was determined

from MDS representation of the corresponding prosodic

word. Measurable distance d̃(A, B) was also computed

using the chosen measures between each of the same

pairs. In Table 4 correlation of those two dissimilarities

are summarised, together with the number of variants

(patterns) being combined (for n variants, the correla-

tion coefficient was computed from n(n− 1)/2 pairs of

d(A, B) and d̃(A, B) values).

It can be seen that in this very first experiment,

the correlations obtained are ranging from highly cor-

related to virtually uncorrelated (with even negative de-

pendency in one case). We expect that it is not related

to a character of the stimuli, as there are no significant

comparable tendencies in the phonetic structure of the

most “successful” prosodic words. Instead, we assume

that there are unsolved issues mainly in the perceived

dissimilarity estimation, as summarised in Section 5.

Despite the variances in correlation, and the fact that

0.5 in average is not much, the most important find-

ing is the validation that the whole idea, of which the

(dis)similarity measure is a critical part, may be feasi-

ble.

5. Conclusion

By no means did we aim to present a measure instantly

applicable for perceived (dis)similarity estimation; we

only intended to show the weak points of the current unit

selection approach together with the proposal of possi-

ble solutions. We also attempted to show that the pro-

posed approach is feasible, although there is still a large

amount of work to do – yet we wish to avoid conclud-

Patterns no. + word Waveform SVD

6 potravin 0.653 0.539

6 pru:mislovi:x 0.936 0.879

6 spolupra:t se -0.416 -0.130

7 vminulosci 0.607 0.541

7 za:kazJi:ku: 0.265 0.422

7 nasvjece 0.834 0.576

8 nemu:Zeme 0.460 0.374

8 novina:P\u:m 0.718 0.727

9 pozornost 0.814 0.822

11 konkurent se 0.577 0.277

11 t Slovjeka 0.510 0.548

13 republit se 0.242 0.291

14 proble:mu: 0.510 0.509

10 informat si: 0.862 0.884

14 zdu:razJil 0.138 0.330

12 hospoda:P\stvi: 0.564 0.291

13 rospot Stu 0.336 0.116

Average: 0.507 0.470

Table 1: The correlation of perceived and measurable

dissimilarities. The words are printed in SAMPA alpha-

bet, each having patterns no. variants being combined

together.

ing that waveform dissimilarity is a better estimator than

SVD.

First of all, we must pay extra attention to the re-

sults of listening tests used for the estimation of d(A, B)
– careful analysis and verification of listener responses

aiming to determine unaccountable answers (the prin-

ciple of listening tests does not consider any answer as

“bad”) is crucial, as relying on incorrect or otherwise

distorted user responses must lead to biased conclusions

in the evaluation of measurable dissimilarity metrics.

Let us note, that the reliability of cross-participant agree-

ment computed by means of Fleiss’ kappa [13] is only

0.21, which does reject the null hypothesis that observed

agreement is accidental on significance level 0.05, but

does not make the agreement strong enough to make

definite conclusions about how to measure perceptual

similarity by acoustic signal. Currently, the answers in

the listening test are reviewed, so it will be interesting to

examine how the review shifts the kappa and the corre-

lation computed in Table 4. Moreover, during building

MDS dissimilarity matrix, there is also the possibility

to employ the information from confusion matrixes [9]

which contain likelihoods of evaluation confidence for

individual listening test participants. The choice of the

optimal dimension of MDS data representation must be

taken into consideration as well.



We also plan to re–examine the proposed microseg-

ment (dis)similarity measures as well as the use of DTW

algorithm for the search of the best match. In addition,

other ways of d̃(A, B) measure must be examined – ei-

ther they are based on the idea of perceived dissimilar-

ity being a deterministic consequence of signal dissim-

ilarity, or they are inspired by Tversky’s feature con-

trast model [6] or fuzzy feature contrast model [8] (it

will, however, require the definition of predicates). Af-

ter that, the correct behaviour of the best dissimilarity

measure found should again be verified by means of lis-

tening tests, but for other voice(s).
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