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Abstract. Gender-dependent (male/female) acoustic models are more acousti-
cally homogeneous and therefore give better recognition performance than single
gender-independent model. This paper deals with a problem how to use these
gender-based acoustic models in a real-time LVCSR (Large VocabularyContinu-
ous Speech Recognition) system that is for more than one year used by the Czech
TV for automatic subtitling of Parliament meetings that are broadcasted on the
channelČT24. Frequent changes of speakers and the direct connection of the
LVCSR system to the TV audio stream require switching/fusion of models auto-
matically and as soon as possible. The paper presents various techniques based on
using the output probabilities for quick selection of a better model or their com-
binations. The best proposed method achieved over 11% relative WER reduction
in comparision with the GI model.

1 Introduction

In recent years, there appeared some projects for hearing-impaired people to help them
to access to the information contained in acoustic signal especially of mass media. One
of those projects is automatic subtitling of live broadcasted teleview. Recently, we intro-
duced the system for automatic subtitling of Parliament meetings that are broadcasted
by the Czech Television (ČT). This system is now used for more than one year by the
ČT on the channeľCT24 (see details in [1]).

Frequent changes of speakers and the direct connection of the LVCSR system to the
TV audio stream brings interesting challenges. This paper describes our effort to build
and use gender dependent acoustic models. The gender-dependent acoustic modeling is
a very efficient way how to increase the accuracy over a genderindependent modeling
in LVCSR and has been previously considered in the literature [2]. The most typical
applications work in two-passes where in the first pass a gender-detection method is
used (based on GMMs or on multilayer perceptrons-MLP) and inthe second pass the
speech is recognized with the corresponding gender-specific acoustic model [3].

In this paper we proposed a new combination methods for fusion of the acoustic
models. These methods were applied on the level of acoustic models output probabili-
ties. In recent years, the huge amount of computations related to acoustic model become
negligible due to the increasing computer speed and capacity of computer memory.
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From that point of view it is possible to compute several acoustic models simultane-
ously and switch or even combine their output probabilitiesin real-time applications.
We would like to discuss and compare such methods with methods commonly used.

2 Methods

Various techniques for acoustic models switching/fusion were proposed. All techniques
were designed for the real-time applications therefore only a small history for ac-
tual processed frame is needed. The first two methods are based on pure switching
of individual acoustic models. The third method switches output probabilities for each
time/state independently through all acoustic models. Theother methods are based on
evaluated total probability of the actual frame for all acoustic models. Some of the pro-
posed methods use exponential forgetting to smooth probability volatility. The detailed
description of the methods follows.

2.1 Frame arg max

This method marked asFrame argmax chooses for the actual frame the acoustic model
that maximizes given criterion. This criterion can be defined in several ways. The com-
monly used criterion is output probability from GMM or MLP. Because it was neces-
sary to compute the output probabilities for all states in all acoustic models for other
switching and fusion methods anyway, we used the total probability of all states of the
acoustic model for the actual frame as our criterion:

P (λk|ooot) =

I
∑

i=1

Pk(si|ooot), (1)

where the total probability is the sum of the allI statessi of the acoustical model
λk andPk(si|ooot) is an output probability of the statesi of the k-th acoustical model
and the feature vectorooot in time t. This criterion has, according to our experiments,
similar results as the commonly used criterion based on GMMs. MethodFrame argmax
chooses for actual frame model with the highest total probability. It means that at first
thekmax is evaluated as

kmax = argmax
k∈1...M

P (λk|ooot) (2)

and thus the new probabilities are

P̂ (si|ooot) = Pk max(si|ooot). (3)

whereM is number of acoustic models and̂P (si|ooot) is the new evaluated state’s prob-
ability.

2.2 Frame arg max with exponential forgetting

Because the time behavior of the total probability is volatile, some kind of smoothing
should be used. The exponential forgetting is a good choice for the real-time applica-
tions. The total probabilities for all models are computed as

Pt(λk) = αPt−1(λk) + (1 − α)P (λk|ooot), (4)
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whereα parameter was set to 0.95. This value was in the center of optimal region in
preliminary experiments. Relation betweenα value and word error rate were exam-
ined and results are shown in section 5. This method marked asFrame argmax exp is
practically the same as the previous method except for usingsmoothed total probability
Pt(λk) instead ofP (λk|ooot).

2.3 Independent maximum

The method marked asMaximum puts as the new probability of the statesi the highest
value of allM acoustic models.

P̂ (si|ooot) = max
k∈1...M

Pk(si|ooot). (5)

It means that the highest output probabilities are searchedfor each statesi though all
M acoustic models at every timet.

2.4 Independent multiplication

The following methods, contrary to the previous ones, are fusion of the output probabil-
ities for states across all available acoustic models. The first method marked asMultiply
is a simple multiplication ofM acoustic models likelihoods for individual state:

P̂ (si|ooot) = M

√

√

√

√

M
∏

k=1

Pk(si|ooot), (6)

wherePk(si|ooot) is an output probability of the statesi of thek-th acoustical model. The
M -th root is there used to normalize probability back into original range. This approach
is implemented internally as an average in log-likelihood domain.

2.5 Independent average

The second fusion method marked asAverage is a simple average ofM acoustic models
likelihoods for individual state:

P̂ (si|ooot) =
1

M

M
∑

k=1

Pk(si|ooot). (7)

2.6 Weighted multiplication with exponential forgetting

Similar to the the switching methods some kind of smoothing should be used. The last
two methods use smoothing via weighted sum or multiplication of all probabilities. The
weights in timet are computed as

wk

t
=

Pt(λk)
∑

M

l=1
Pt(λl)

. (8)
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The method marked asW mult exp evaluates new probabilities as

P̂ (si|ooot) =

M
∏

k=1

Pk(si|ooot)
w

k

t . (9)

In log-likelihood domain this approach can be implemented more simple as weighted
sum of the log-likelihoods with precomputed weightswk

t
.

2.7 Weighted sum with exponential forgetting

The method with exponential forgetting is the last fusion method which is proposed in
this paper. It is marked asW sum exp and it evaluates new probabilities as weighted
sum

P̂ (si|ooot) =

M
∑

k=1

wk

t
Pk(si|ooot). (10)

In summary, the three switching and four fusion methods wereproposed. All of
them are fitted to real-time processing and do not pose any restriction to the number of
acoustic models being used.

There’s no need to compute all probabilities of all acousticmodels for the first two
switching methods. It is necessary to compute only one modelin actual time if we have
some estimate of total probability of individual models. This estimate can be done via
much smaller GMM or with some algorithm using Gaussians pruning of the evaluated
HMM model.

For fusion methods all state’s probabilities of all models need to be evaluated but
pruning or other fast HMM evaluation technique can be used. In addition, in the first
stage just single acoustic model can be evaluated and, in thesecond stage, only small
number of relevant states can be evaluated for other acoustic models. By using this
scenario the computation burden increases over single-model only slightly.

3 Train data description

For acoustic model training a microphone-based high-quality speech corpus was used.
This corpus of read-speech consists of the speech of 800 speakers (384 males and
416 females). Each speaker read 170 sentences. The databaseof text prompts from
which the sentences were selected was obtained in an electronic form from the web
pages of Czech newspaper publishers[4]. Special consideration was given to the sen-
tences selection, since they provide a representative distribution of the more frequent
triphone sequences (reflecting their relative occurrence in natural speech). The corpus
was recorded in the office where only the speaker was present.The recording sessions
yielded totally about 220 hours of speech.
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4 Experimental setup

4.1 Acoustic processing

The digitization of an analogue signal was provided at 22.05kHz sample rate and 16-bit
resolution format. The aim of the front-end processor was toconvert continuous speech
into a sequence of feature vectors. Several tests were performed in order to determine
the best parameterization settings of the acoustic data (see [5] for methodology). The
best results were achieved using PLP parameterization [6] with 27 filters and 12 PLP
cepstral coefficients with both delta and delta-delta sub-features (see [7] for details).
Therefore one feature vector contained 36 coefficients. Feature vectors were computed
each 10 milliseconds (100 frames per second).

4.2 Acoustic modeling

The individual basic speech unit in all our experiments was represented by a three-state
HMM with a continuous output probability density function assigned to each state. As
the number of Czech triphones is too large, phonetic decision trees were used to tie
states of Czech triphones. Several experiments were performed to determine the best
recognition results according to the number of clustered states and also to the number of
mixtures. In all presented experiments, we used 16 mixturesof multivariate Gaussians
for each of the 4922 states. The prime single mixture triphone acoustic model trained by
Maximum Likelihood (ML) criterion was made using HTK-Toolkit v.3.4 [8]. Further,
three 16 mixtures models were trained from the prime model: gender-independent, male
and female. The training procedure has two stages. At first, 16 mixtures models were
trained with HTK using ML criterion. At second, final models were obtained via two
iterations of MMI-FD discriminative training [9, 10].

4.3 Gender based splitting

As was presented in [9], the splitting via manual male/female markers need not to be
optimal due to several ”masculine” female and ”feminine” male voices occurring in the
training corpora and also because of possible errors in manual annotations. Therefore,
an initial splitting (achieved via manual markers) was realigned via automatic clus-
tering algorithm. After this process, two more acoustically homogeneous classes were
available for gender-dependent acoustic modeling which was described in previous sub-
section.

4.4 Test conditions

The test set consists of 100 utterances from 100 different speakers (64 male and 36
female speakers), which were not included in training data.There were no cross talk-
ing or speaker changes during each utterance. This portion of utterances was ran-
domly separated to 10 sets so that each set contains at least one male and one fe-
male speaker. This multi-utterances were created in order to simulate real-time speaker
changes. All recognition experiments were performed with abigram back-off language
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model with Good-Turing discounting. The language model wastrained on about 10M
tokens of normalized Czech Parliament transcriptions. TheSRI Language Modeling
Toolkit (SRILM)[11] was used for training. The model contains 186k words and the
perplexity of the recognition task was 12362 and OOV was 2.4%(see [12] and [13] for
details).

5 Results

To follow up our last year paper [9], the same three acoustic models were used: gender-
independent (GI), male and female. At first, all these modelswere tested stand alone. At
second, all switching and fusion method were evaluated. Allthe results are in table 1.

Table 1. The results of recognition experiments

Stand alone models WER [%]

Gender-independent 16.92
Male 22.08
Female 30.07
Fusion 14.96

From the table 1 it is clear thatMultiply and Frame argmax methods gave even
higher WER than GI model. On the other hand, some methods gave significantly lower
WER than GI. The lowest WER has been obtained viaW sum exp method and its rela-
tive WER reduction is 2% absolutely and more than 11% relatively.

Proper setting ofα parameter is needed for methods with the exponential forgetting.
For all these methods the optimal value range was very similar. The advisableα region
is between 0.9 and 0.99. The relation betweenα value and word error rate is depicted
on figure 1.

6 Conclusion

Various methods of employing gender-dependent acoustic models to the LVCSR sys-
tem were tested in this paper. The methods had to be designed for real-time automatic
subtitling task which is connected to the live TV audio stream. Three switching and
four fusion methods were proposed, described and tested. Some of them gave signifi-
cantly better results than the gender-independent modeling. The lowest WER has been
obtained with weighted sum of the HMM state probabilities ofall acoustic models
(method marked asW sum exp) and its relative WER reduction is 2% absolutely and
more than 11% relatively. All proposed methods are able to combine even higher num-
ber of acoustic models than they were tested with.
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Fig. 1. Relation of α value and WER.
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