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Abstract
Dialog act (DA) segmentation in meeting speech is important
for meeting understanding. In this paper, we explore speaker
adaptation of hidden event language models (LMs) for DA seg-
mentation using the ICSI Meeting Corpus. Speaker adaptation
is performed using a linear combination of the generic speaker-
independent LM and an LM trained on only the data from in-
dividual speakers. We test the method on 20 frequent speak-
ers, on both reference word transcripts and the output of auto-
matic speech recognition. Results indicate improvements for 17
speakers on reference transcripts, and for 15 speakers on auto-
matic transcripts. Overall, the speaker-adapted LM yields sta-
tistically significant improvement over the baseline LM for both
test conditions.
Index Terms: language model adaptation, speaker adaptation,
meetings, dialog act segmentation, sentence segmentation

1. Introduction
Segmentation of speech into sentence-like units is a crucial
first step in spoken language processing, since many down-
stream language processing techniques (e.g., parsing, automatic
summarization, information extraction and retrieval, machine
translation) are typically trained on well-formatted input (such
as written text). Several different approaches have been em-
ployed for sentence segmentation, including hidden Markov
models (HMMs), multilayer perceptrons, maximum entropy,
conditional random fields, AdaBoosting, and support vector
machines [1, 2, 3, 4, 5, 6]. Many of these approaches rely on
both acoustic (prosodic) and lexical information.

Studies on sentence segmentation have been conducted in
different domains, including broadcast news, conversational
telephone speech, and meetings. Our task in this paper is to
automatically segment meeting recordings into sentences, or
dialog acts (DAs) for this domain. In many real-life meet-
ing applications, the speakers are often known beforehand and
recorded on a separate channel. Moreover, many meetings have
recurring participants, presenting the opportunity for adapting
models to the individual talkers. Speaker adaptation methods
were first successfully used in the cepstral domain for speech
recognition [7, 8]. In [9], we evaluated speaker-dependent
prosody models for DA segmentation in meetings. However, it
was left unanswered whether speaker-dependent language mod-
els (LMs) would also benefit DA segmentation. In this paper we
aim to address this question; our goal is to try to adapt the LM to

capture speakers’ idiosyncratic lexical patterns associated with
DA boundaries.

General LM adaptation has been studied rather extensively
in speech recognition and other language processing tasks, us-
ing both supervised [10, 11] and unsupervised [12, 13, 14] ap-
proaches. A useful survey of LM adaptation techniques is given
in [15]. The typical approach is to use the test words to deter-
mine the topic for the test document, and then use the topic-
specific LM or its combination with the generic LM. For the
sentence segmentation task, [16] successfully used both acous-
tic and lexical data from another domain (with slightly different
definition for sentence boundaries) to aid automatic sentence
segmentation in meetings.

Although topic- and domain-based LM adaptation ap-
proaches have received significant attention in the literature,
much less is known about LM adaptation for individual talkers.
Akita and Kawahara [17] showed improved recognition per-
formance using LM speaker adaptation by scaling then-gram
probabilities with the unigram probabilities estimated via prob-
abilistic latent semantic analysis. Tur and Stolcke [18] demon-
strated that unsupervised within-speaker LM adaptation signif-
icantly reduced word error rate in meeting recognition. Unlike
previous work in DA segmentation (which typically focuses on
features or modeling approaches in a speaker-independent fash-
ion) or LM adaptation (mostly topic-based adaptation in the task
of speech recognition), in this study, we investigate whether
speaker adaptation of LMs may help in automatic DA segmen-
tation of meetings.

The remainder of the paper is organized as follows. We
describe our approach in Section 2. The experimental setup, re-
sults, and discussion are shown in Section 3; Section 4 provides
conclusions.

2. Method
2.1. Hidden-event Language Model

For a given word sequencew1w2...wi...wn, the task of DA seg-
mentation is to determine which inter-word boundaries corre-
spond to a DA boundary. We label each inter-word boundary
as either a within-unit boundary or a boundary between DAs.
For example, in the utterance “yes we should be done by noon”,
there are two dialog acts: “yes” (an answer), and “we should
be done by noon” (a statement). Each ends in a segmentation
boundary.

We use a hidden event LM [19] to automatically detect



DA boundaries in the unstructured word sequence. The hid-
den event LM describes the joint distribution of words and DA
boundaries,PLM (W, B). The model is trained by explicitly in-
cluding the DA boundary as a token in the vocabulary in word-
basedn-gram LM. During testing, the hidden event LM uses the
pair of word and DA boundary as the hidden state in HMM, and
the words as observations, and performs a Viterbi or forward-
backward decoding to find the DA boundaries given the word
sequence. We used trigram LMs with modified Kneser-Ney
smoothing [20] in the SRILM toolkit [21].

2.2. Speaker Adaptation Approach

To adapt the generic speaker-independent LM to a particular
speaker, we use an interpolation approach. The speaker-adapted
modelSA is obtained from a linear combination of the speaker-
independent modelSI and a speaker-dependent modelSD as
follows:

PSA(ti|hi; λ) = λPSI(ti|hi) + (1 − λ)PSD(ti|hi) (1)

where ti denotes a token (word or DA boundary) andhi its
history ofn − 1 tokens in ann-gram LM.λ is a weighting fac-
tor that is empirically optimized on held-out data. We compare
different approaches to estimateλs, as described in Section 3.
Note that theSD data is already contained in theSI data for
LM training; therefore, this interpolation does not help reduce
out-of-vocabulary rate, it rather gives a larger weight ton-grams
observed in the data corresponding to a particular speaker and
is expected to be better suitable to this speaker.

3. Results and Discussion
3.1. Data and Experimental Setup

The ICSI meeting corpus [22] contains approximately 72 hours
of multichannel conversational speech data and associated hu-
man transcripts, manually annotated for DAs [23]. We selected
the top 20 speakers in terms of total words. Each speaker’s
data was split into a training set (∼70% of data) and a test set
(∼30%), with the caveat that a speaker’s recording in any par-
ticular meeting appeared in only one of the sets. Because of
data sparsity, especially for the less frequent speakers, we did
not use a separate development set, but rather jackknifed the
test set in our experiments.

The total training set for speaker-independent models (com-
prising the training portions of the 20 analyzed speakers, as well
as all data from 32 other less-frequent speakers) contains 567k
words. Data set sizes for individual speakers are shown in Ta-
bles 1 and 2; size of training sets used for speaker adaptation
(referred to as “adaptation sets”) ranges from 5.2k to 115.2k
words. We use the official corpus speaker IDs. The first let-
ter of the ID denotes the sex of the speaker (“f” or “m”); the
second letter indicates whether the speaker is a native (“e”) or
nonnative (“n”) speaker of English.

We use two different test conditions: reference transcripts
(REF) and speech recognition output (Speech-To-Text, STT).
Recognition results were obtained using the state-of-the-art
SRI CTS system [24], which was trained using no acous-
tic data or transcripts from the analyzed meeting corpus. To
represent a fully automatic system, we also used automatic
speech/nonspeech segmentation. Word error rates for this dif-
ficult data are still quite high; the STT system performed at

38.2% (on the whole corpus). To generate the “reference” DA
boundaries for the STT words, we aligned the reference setup
to the recognition output with the constraint that two aligned
words could not occur further apart than a fixed time threshold.

A robust estimation of the interpolation weightλ in Eq (1)
may be a problem because of data sparsity. In the jackknife
approach, one half of speaker’s test data is used to estimate
λ for the other half, and vice versa. We test two methods for
estimatingλs. First, λs are estimated individually for each
speaker. Second, we setλ as the average value of the inter-
polation weights across all the speakers. Note that in the latter
approach, however, we still use only data from the first halves of
individual test sets to estimateλ for the second halves, and vice
versa. This approach eliminates having two significantly differ-
ent values ofλ for a single speaker, which did occur for some of
the 20 analyzed speakers. It indicated that for those speakers,
there is a mismatch in the two halves of the test data used in
jackknife, and thus the weights were not optimized properly for
the test set.

3.2. Evaluation Metrics

We measure DA segmentation performance using a “boundary
error rate” [1]:

BER =
I + M

NW

[%] (2)

whereI denotes the number of false DA boundary insertions,
M the number of misses, andNW the number of words in the
test set. In addition, we report overall results using another com-
mon metric, the NIST error rate. For DA segmentation, it is
defined as the number of misclassified boundaries divided by
the total number of DA boundaries in the reference. It can be
expressed as

NIST =
I + M

NDA

[%] (3)

whereNDA denotes the number of DA boundaries in the test
set. Note that this error rate may be even higher than 100%.

3.3. Results for Individual Speakers

Table 1 shows a comparison of DA segmentation performance
for the baseline speaker-independent LM and speaker-adapted
LMs for individual speakers, using reference transcripts. The
speakers displayed in the table are sorted according to the to-
tal numbers of words they have in the corpus. The numbers of
words in adaptation and test sets are also listed. The results in-
dicate that for 17 of 20 speakers, performance improved using
both individual and global weights, and two other speakers im-
proved only for one of the two interpolation methods. However,
the degree of the improvement varies across particular speak-
ers. For 8 talkers, the improvement was statistically significant
at p ≤ 0.05 using a Sign test for both methods. For 4 others it
was significant for only one of the methods.

Table 2 reports the corresponding results for the STT condi-
tions. Note that the test set sizes differ from the previous table,
since the number of words in STT outputs is usually smaller
than that in the corresponding reference. The results show that
15 speakers improved using both interpolation methods, while
4 other speakers improved just for one of the methods. Again,
for 8 talkers, the improvement was significant atp ≤ 0.05 for
both methods, and for 4 others the improvement was significant



Table 1:Boundary error rates (BER) [%] in REFerence conditions for individualspeakers. ID=Speaker ID, #Adapt and #Test denote
the number of words in the adaptation and test sets for each speaker, Baseline speaker-independent model performance, AdInW adapta-
tion with individual weights, and AdGlW adaptation with global weights. IDs of speakers who improved using both methods are shown
in boldface, * and ** indicate that the improvement is significant by a Sign test at p <= 0.05 for one or both methods, respectively.

ID #Adapt #Test Baseline AdInW AdGlW ID #Adapt #Test Baseline AdInW AdGlW

me013** 115.2k 51.2k 6.75 6.55 6.52 mn052 10.7k 3.8k 7.33 7.28 7.28
me011* 50.6k 24.8k 7.40 7.38 7.25 mn021** 9.6k 4.1k 6.68 5.41 5.65
fe008** 50.6k 22.6k 7.51 7.12 7.16 me003 9.3k 3.6k 8.78 8.45 8.56
fe016* 32.0k 15.4k 7.35 7.22 7.18 mn005** 7.7k 3.1k 7.83 7.01 6.92
mn015** 31.9k 14.7k 8.05 7.75 7.80 me045 8.1k 2.4k 8.90 8.94 8.90
me018* 31.8k 14.7k 6.64 6.43 6.45 me025 7.7k 2.4k 8.06 8.02 7.85
me010** 26.1k 12.6k 7.24 6.96 6.84 me006 6.9k 1.5k 9.53 10.32 9.47
mn007* 21.0k 10.1k 7.59 7.36 7.31 me026 5.2k 2.5k 5.80 5.76 5.80
mn017** 21.0k 7.1k 7.02 6.44 6.44 me012** 5.3k 2.1k 6.85 6.29 6.29
mn082 13.3k 4.2k 6.33 6.28 6.21 fn002 5.9k 1.5k 10.92 10.79 11.33

Table 2: Boundary error rates (BER) [%] in Speech-To-Text conditions for individual speakers. ID=Speaker ID, #Adapt and #Test
denote the number of words in the adaptation and test sets for each speaker, Baseline speaker-independent model performance, AdInW
adaptation with individual weights, and AdGlW adaptation with global weights. IDs of speakers who improved using both methods
are shown in boldface, * and ** indicate that the improvement is significantby a Sign test atp <= 0.05 for one or both methods,
respectively.

ID #Adapt #Test Baseline AdInW AdGlW ID #Adapt #Test Baseline AdInW AdGlW

me013** 115.2k 43.4k 8.29 8.16 8.18 mn052* 10.7k 3.5k 10.87 10.49 10.17
me011** 50.6k 22.9k 8.81 8.59 8.51 mn021* 9.6k 4.1k 8.20 7.83 7.73
fe008* 50.6k 19.5k 9.19 9.05 8.89 me003 9.3k 3.2k 9.36 9.36 9.33
fe016 32.0k 13.9k 8.42 8.40 8.31 mn005** 7.7k 3.0k 11.47 8.94 10.42
mn015** 31.9k 13.7k 10.16 9.90 9.84 me045 8.1k 2.1k 11.08 11.42 11.27
me018** 31.8k 13.3k 8.12 7.83 7.90 me025 7.7k 1.6k 14.36 14.23 14.36
me010** 26.1k 11.3k 8.39 7.96 7.91 me006* 6.9k 1.3k 10.94 10.01 10.40
mn007** 21.0k 8.4k 11.28 10.73 10.78 me026 5.2k 2.3k 7.35 7.01 6.88
mn017** 21.0k 6.0k 8.92 8.01 7.84 me012 5.3k 1.9k 8.68 8.15 8.31
mn082 13.3k 3.7k 10.37 10.45 10.10 fn002 5.9k 1.4k 13.40 13.40 12.89

for one method. An interesting observation is that for both test-
ing conditions, the relative error reduction achieved by speaker
adaptation is not correlated with the amount of adaptation data.
This finding suggests that speakers differ inherently in how sim-
ilar they are to the generic speaker-independent LM. Some talk-
ers probably differ more and thus show more gain, even with
less data.

3.4. Overall Results

An overall comparison of performance of baseline speaker-
independent and speaker-adapted LMs is presented in Table 3.
The test set contains 203k words for REF and 180k words
for STT conditions. These results show that for both condi-
tions, speaker-adapted LMs — with either global interpolation
weights or individual weights — outperform the baseline. The
overall improvements by LM speaker adaptation for both con-
ditions are statistically significant atp < 10−15, using a Sign
test. Of the two weight options, global interpolation results in
better performance; however, the difference between the two
approaches is significant only atp < 0.1.

In speech-to-text conditions we also tried interpolating the
speaker-independent model trained on reference transcriptions

with a speaker-dependent model trained on the recognizer out-
put. The idea was to allow the model also to adapt for error
patterns typical for an individual talker. However, this adapta-
tion performed less well than using reference transcriptions as
the training data, which indicates that, at least with the amount
of data available for our experiments, it is preferable to adapt
LMs using clean data. In consequence it also suggests that
prospective unsupervised approaches to LM speaker adaptation
will perform less well than the supervised approach.

Table 3: Overall boundary error rates (BER) [%] and NIST
error rates [%] in REFerence and STT conditions

Test conditions REF STT

Metric BER NIST BER NIST

Baseline 7.30 48.56 9.06 68.65
Individual weights 7.02 46.74 8.79 66.61
Global weights 6.99 46.56 8.76 66.38
Adapt with STT data N/A N/A 8.97 68.03



4. Conclusions
We have explored speaker adaptation of hidden event language
models for automatic DA segmentation of multiparty meetings.
The speaker adaptation is based on a linear combination of the
generic speaker-independent and speaker-dependent LMs. We
evaluated the method on 20 frequent speakers with a wide range
of total words available for LM adaptation. We examined the
approach using both reference word transcripts and recognizer
outputs. We found improvements for 17 speakers using ref-
erence transcripts, and for 15 speakers using automatic tran-
scripts. Overall, we achieved a statistically significant improve-
ment over the baseline LM for both testing conditions. The im-
provement was achieved even for some speakers who had only
a relatively small amount of data available for adaptation. We
conclude that speaker adaptation of LMs aids DA segmentation,
and that future work should investigate the potential of speaker-
specific modeling for other tasks. Other important areas for fu-
ture extensions include the integration of lexical with prosodic
or even multimodal information, and exploration of unsuper-
vised approaches.
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