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Abstract. This paper presents highly optimized implementation of image 
registration method that is invariant to rotation scale and translation. Image 
registration method using FFT works with comparable accuracy as similar 
methods proposed in the literature, but practical applications seldom use this 
technique because of high computational requirement. However, this method is 
highly parallelizable and offloading it to the commodity graphics cards 
increases its performance drastically. We are proposing the parallel 
implementation of FFT based registration method on CUDA and OpenCL. 
Performance analysis of this implementation suggests that the parallel version 
can be used for real time image registration even for image size up to 2k x 2k. 
We have achieved significant speed up of up to 345x on NVIDIA GTX 580 
using CUDA and up to 116x on AMD HD 6950 using OpenCL. Comparison of 
our implementation with other GPU based registration method reveals that our 
implementation performs better compared to other implementations.  
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1 Introduction 

Image registration (IR) is defined as detection of the presence of complete or partial 
image (test image) in a reference image. Image registration is useful in applications 
like, motion tracking, machine vision, image restoration etc. This paper uses the 
method of image registration based on spectral components (FFT). FFT based method 
uses the property of shift theorem according to which, phase difference between two 
images gives the translation between two images. Phase correlation method was first 
developed by Kuglin and Hines [1] by utilizing some properties of Fourier transform. 
Fourier transform is capable of determining shift between two images. So, DeCastro 
and Morandi [2] proposed a modified method to determine the rotation by using 
Fourier transform. The method was improved by Reddy and Chatterji [3] for 
performance and accuracy which was further clarified mathematically by 
Sierra et al. [4]. Recently, Rittavee Matungka (2009) details the log polar 
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Fig. 2. Reference Image (left), Scaled Image (center), Scaled and Rotated image (right) 

Î2ሺ஑, £ሻ  Î2ሺ஑, £ሻ|Î2ሺ஑,£ሻ|  |Î2ሺ஑, £ሻ| ൌ e(i2П α ∆x+ £∆y) (4)

In theory, inverse of equation (4) should give impulse function indicating the 
translation in x and y direction but in presence of noise practical approach is to find 
the value of ∆x and ∆y for maximum value of cross correlation. 

2.2 Rotation 

Suppose I1 and I2 are two images and I2 is rotated by angle φ with respect to I1. 
Rotation relationship between I1 and I2 is given by equation (5). Applying Fourier 
transform on both sides, 

I2ሺx, yሻ ൌ  



)sin(-

)cos(
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



)cos(

)sin(
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ϕ I1ሺx െ ∆x, y െ ∆yሻ 

 

(5)

Î2ሺα, £ሻ ൌ eሺ୧ଶП ஑∆୶ା £∆୷ሻ Î1ሺαcos ሺ߮ሻ ൅ £sinሺ߮ሻ, െαsinሺ߮ሻ െ £cosሺ߮ሻ ) (6)

Where,  A2 ൌ  A1ሺαcos ሺ߮ሻ ൅ £sinሺ߮ሻ, െαsin ሺ߮ሻ െ £cosሺ߮ሻ) (7)

It is evident from equation (7) that magnitude of I1 and I2 are same except that the 
spectrum of I1 is rotated by angle φ with respect to magnitude of I2. In order to get the 
rotation angle, amplitude of I1 and I2 should be converted to polar co-ordinates. This 
converts the rotational shift to translation which is shown in equation (8). Phase 
correlation of polar domain can be used to get the rotation of images. A2 ൌ A1ሺ߮ െ ߮0ሻ (8)

2.3 Scaling 

I1 and I2 are two images where I2 scaled version of I1 and the scaling factor is µ. This 
can be represented in frequency domain by equation (9). Scaling in frequency domain 
can be found by converting the Fourier transform values to logarithmic scales and 
computing phase correlation of the same. It is shown by equation (10). 
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Î2(α, £) = Î1(α/µ, £/µ) (9)

Î2(log(α),log(£)) = Î1(log(α) – log(µ), log(£) - log(µ)) (10)

2.4 Scale, Rotation, and Translation 

Using above concepts, it is clear that if image I2 is scaled, rotated and translated by µ, 
φ and ∆x, ∆y with respect to I1 then it can be represented in Log-polar frequency 
domain by equation (11).  A2ሺlogሺαሻ , ߮ሻ ൌ  A1ሺlog ሺ߮ሻ െ log ሺμሻ, ሺ߮ െ ߮0ሻሻ  (11)

By computing the maxima of phase correlation of equation (11), phase angle and 
scaling can be found out. In second step, reverse transformations (scale and rotation) 
is applied to the test image and phase correlation is applied to the transformed image 
to find the values of ∆x and ∆y. 

3 GPGPU 

The tasks suitable for processing on GPU are characterized by high parallelism, low 
dependency between individual work elements and rather numerical character with 
minimal branching. Such tasks are commonly known as data-parallel algorithms. Due 
to the distinctive characteristics of GPU architecture (high speed, high latency main 
memory, limited caching capabilities, limited communication with CPU, minimal 
thread switching and planning overhead), the common CPU programming models 
(and programming languages based on this programming models) are not suitable for 
GPU programming. In order to achieve close-to-peak performance, the programmer 
must consider many low level specifics of the given target architecture and therefore, 
the programming model as well as the programming language must support explicit 
expression of programmer’s intentions. NVIDIA’s CUDA (Compute Unified Device 
Architecture) has gained a wide acceptance, however the CUDA standard is 
proprietary and the intellectual property concerns led to development of an open 
standard OpenCL (Open Computing Language). 

The OpenCL standard was developed in cooperation with teams from ATI/AMD, 
IBM, Intel, NVIDIA and others and many HW vendors and SW producers announced 
support of OpenCL in their products. Unfortunately, this wide acceptance does not 
dislodge the burden of hand-tuning the computational kernels for individual distinct 
HW architectures. The NVIDIA GPU consists of many processing elements (PEs) 
called multiprocessors. Older NVIDIA GPUs have 8 stream processors in each PE 
together with 16kB on-chip local memory (called shared memory). Single PE offers 
8k or 16k 32-bit registers, depending on GPU series. The Fermi-based PEs are bigger 
and contain 32 or 48 stream processors. The 64kB on-chip memory can be set to two 
configurations: 16kB L1 cache and 48kB local memory or vice versa. The core clock 
(stream processors and local memory) is higher than the rest of the GPU. The peak 
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memory bandwidth from global memory can be achieved only via coalesced access, 
where consecutive 16 work-items (half-warp) access consecutive addresses [9]. The 
ATI/AMD GPUs are based on very long instruction word (VLIW) architecture. This 
architecture also consists of multiple PEs. However, compared to NVIDIA PEs, the 
internal architecture is different. Each PE contains 16 stream cores, each equipped 
with five stream processors (four in Cayman based 69XX GPUs). This is why 
ATI/AMD GPUs have a higher raw computational performance than comparable 
NVIDIA GPUs. In real life, however, it is difficult to supply the input data 
sufficiently fast to keep these high-performance multiprocessors fully utilized. 
Therefore, the maximal performance cannot be achieved in some tasks or badly 
optimized implementations.  

4 Implementation Description 

Figure 3 shows the steps to detect rotation and scale of input image with respect to the 
reference image. The registration process consists of two stages. First stage computes 
the rotation and scale. Second stage computes the translation using scale and rotation 
computed by first stage. This section discusses the parallel implementation of IR 
algorithm on GPGPU.  

The first step of the first stage is computation of gradient image. We have used the 
Sobel gradient with 3x3 kernel for this purpose. Sobel gradient computation is a pixel 
level operation and hence it is suitable to the GPGPU. Output of each pixel is the 
weighted sum of surrounding pixels with Sobel operator. However, for computation 
of each output pixel, nine input pixel is read which is inefficient as global memory 
fetch is very slow. To increase the performance, we have proposed a novel kernel 
with following features:  

- Each thread of the kernel process 4x2 pixel block and the threads process 
consecutive blocks. It ensures better data reusing and save some computing 
instructions. 

- The input data are 8-bit pixels. Each thread fetches 4x4 pixel block from 
texture memory where four consecutive pixels are stored as single 32-bit 
integer. Two of the threads read extra two blocks on the boundaries. 

- To gather all the pixels needed for processing, two four-pixel blocks are 
interchanged between threads using local memory. 32-bit data type is used 
to store/read four pixels at once. Now, each thread keeps 6x4 pixel block in 
registry. 

- To save some computing instructions, vertical and horizontal differences 
are computed in advance. Than final gradient coefficients are computed. 

- The results are stored via coalesced access to the global memory. 
- This approach is more than 3-times faster than Sobel sample codes from 

CUDA SDK or AMD Accelerated Parallel Processing (APP) SDK.  
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Fig. 3. Rotation and Scale detection  

FFT of Sobel output for both the images is computed and the coordinate is shifted to 
the center. For this purpose, we have used the FFT library (cufft) provided by CUDA 
and FFT OpenCL library provided by AMD APP. In order to transform rotation and 
scale as translation, FFT is mapped to from the rectangular to log polar (RLP) 
coordinate. As there is no integer mapping between log polar and rectangular 
coordinate, bilinear interpolation method is used. Height of the image is mapped to 180 
degrees in polar co ordinate using angular resolution Δθ as in equation (11). As the log 
conversion is non-linear, corresponding base selection (equation (12)) is required. ∆θ ൌ PIH , where H െ Image height (11)b ൌ pow ቀ10, ୪୭୥ሺWሻW ቁ where W – Image width  (12)x ൌ r כ cosሺ∆θሻ ൅ x0 y ൌ r כ sinሺ∆θሻ ൅ y0 
Where, x0, y0 – center of image 

x, y – transformed co ordinate of image  

(13)

Using base (b) and angle resolution (Δθ) image is converted to the log polar with 
amplitude ranging from 0 to bW and angle varying between 0 to 180 degrees as per 
equation (13).  RLP implementation is straightforward on GPU as it is pixel-based 
operation. To optimize the performance further, texture fetch is used as bilinear 
interpolation uses four pixels which are selected by taking two integer x and two 
integer y values on the boundary of real values computed using equation (13).  

Phase correlation of log polar values of reference and test image is calculated and 
the location maximum of inverse FFT gives values of rotation and scaling by applying 
equation (11) and (12). Phase correlation is computationally intensive operation on 
CPU but its pixel wise operation makes it suitable for optimization on GPU. 
Computation of maximum also consumes considerable time. In addition, it is not a 
pixel operation and involves dependency during computation. We have used a fast 
two-stage approach to compute the maximum of array together with its coordinates. 
The first stage is parallel as it searches for the individual maxima in partitioned data. 
The number of parts should be high enough to ensure full GPU occupancy. But too 
high number of parts decreases the performance. The second stage computes the final 
maximum and coordinates. Both the kernels/stages are based on a well-known 
parallel reduction scheme [10]. 

Second stage of IR algorithm involves translation detection by applying reverse 
transformation of image (rotation and scale obtained during stage 1). The scaling and 
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rotation is done by a simple kernel using texture memory where bilinear interpolation 
is enabled. Translation is obtained using transformed image instead of test image in 
stage 1 and repeating all the steps in stage1. Figure 4 shows the breakdown of tasks 
and overall GPU utilization for FFT based IR method. 

 

Fig. 4. GPU utilization of FFT based IR method 

5 Results 

We have implemented the IR method on different GPUs using CUDA and OpenCL. 
Table 1 shows the results on three GPUs. GTX 580 and GTX 260 are NVIDIA cards 
where CUDA was used. The last one is AMD Radeon HD 6950 with OpenCL. All the 
cards were running on Intel Core i7 host CPU with 3.2GHz clock frequency, 8MB 
cache and 4 GB RAM. We have got very high speed up compared to the CPU version. 
Our implementation achieves the maximum speed up of 345 times for image size 2k x 
2k in GTX 580. The OpenCL on AMD GPU is significantly slower. There are a few 
reasons for the lower performance. AMD OpenCL implementation does not support 
fast memory transfers through PCI. These transfers take almost a half of total time for 
small images. The FFT kernels also take significantly more time. It seems that 2D 
FFT does not fit on AMD GPU architecture well or the AMD FFT library is not as 
optimal as the NVIDIA cuFFT library. Most of the other kernels are memory-
intensive and high AMD GPU algorithmic performance cannot be utilized. Higher 
overhead of OpenCL API also degrades performance of simple and fast kernels. 

We can see in graph of figure 5 that minimum number of frames per second (fps) 
processed is approximately 34 for image size 2048x2048 for GTX 580. Point worth 
mentioning here is that the size of test image does not affect the performance as we 
have resized the test image to reference image size first and then processed the entire 
image. Performance is less for HD 6950 and GTX 260 but it is still real time. Hence, 
the algorithm performs in real time for all the practical image sizes. Comparison in 
Table 1 assumes single threaded code with default compiler optimization on CPU. 
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Hence the speed up is very high. So, we have benchmarked our implementation with 
other implementations proposed in literature. Table 2 summarizes some of the 
methods that include the state of the art method proposed by David Lowe [8]. To 
make the comparison fair, we have mentioned the GPU configuration used in earlier 
papers. Table 2 also suggests that our implementation on GPU performs faster 
compared to all other methods. Figure 6 shows the output of image registration 
method and we have found that it is able to detect objects accurately with a resolution 
of 0.01. Only noticeable disadvantage of our method is that it does not have high 
accuracy for scale factors more than 2.5 as the features in image above these scale 
values are not recognized properly by this method. 

Table 1. Performance comparison of CPU and GPU for FFT based Image Registration method  

Image Size 
Time 
(ms) 
CPU 

Time(ms) /  Speed up
GTX 580, CUDA 

Time(ms) /  Speed up
GTX 260, CUDA 

Time(ms) /  Speed up 
HD 6950, OpenCL 

512 x 512 513   2.6 / 197x   4.9 / 105x 17.6 /   29x 
1024 x 1024 2240   7.7 / 291x 18.3 / 122x 31.5 /   71x 
2048 x 2048 9972 28.9 / 345x 86.3 / 116x 85.9 / 116x 

Table 2. Performance comparison with other Image Registration methods 

Method Image Size Time 
(ms) 

GPU 
specification 

Comments 

 
(1) SIFT [11] 

 
1k x 1k 

 
160 

  
GPU implementation 

(2) SURF [11] 1k x 1k 70 GTX 260 GPU implementation 
(3) Grayscale [6] 1k x 1k 100  GTX 260 Very low scale and rotation resolution 
(4) ORB [12] 640x480 15.3 NA Implemented for embedded processor 
(5) Image  
Matching [13] 

0.5k x 0.5k 6.8 GeForce 
8800 

GPU Implementation 

 1k x 1k 19   
 2k x 2k 71   
     

 

Fig. 5. Performance of IR method for different Image size, GPU and APIs 
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Fig. 6. Reference Image (left), test image (center), Registered Image (right) 

6 Conclusion 

This paper presented the real time implementation of image registration method on 
GPGPU. We have implemented the method on graphics processors of different make 
to evaluate our results. We have found that the algorithm has real time performance 
for image size up to 2k x 2k when most of the registration methods fail to deliver the 
real time performance. We have not compromised in accuracy for this optimization 
even for larger image since angle and scale resolution is expected to be reduced to 
increase the performance. In our implementation, we have not reduced the angle and 
scale resolution but still able to get the real time performance. The high performance 
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Rotation – 315  
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Rotation – 335  
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of this algorithm is due to novel parallelization strategy and intelligent use of different 
types of GPU memory like texture and shared memory. We have achieved a 
maximum speed up of 345 times compared to the CPU version for CUDA on GTX 
580 and 116 times on Radeon HD 6590 using OpenCL. We have also implemented 
the algorithm on GPU from other vendors than NVIDIA to make it usable for all 
graphics processors. The results show that it has comparable accuracy with other 
implementations for scale factor up to 2.5 and for all rotation angles. In addition, the 
resolution of angle and scale factor is as low as 0.01. Most of the image registration 
methods suffer from performance drawbacks. FFT based image registration has 
sufficient accuracy for machine vision problems and our parallel implementation on 
graphics processors makes it usable for real time applications.   
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