
A. Campilho and M. Kamel (Eds.): ICIAR 2012, Part I, LNCS 7324, pp. 224–233, 2012.
© Springer-Verlag Berlin Heidelberg 2012

GPU Accelerated Real Time Rotation, Scale
and Translation Invariant Image Registration Method

Sudhakar Sah1, Jan Vanek2, YoungJun Roh3, and Ratul Wasnik1

1 CREST, KPIT Cummins Infosystems Ltd. Pune, India
2 Department of Cybernetics , West Bohemia University, Czech Republic

3 Productivity Research Institute, LG Electronics Inc., South Korea
{sudhakar.sah,ratul.wasnik}@kpitcummins.com,
 vanekyj@kky.zcu.cz, youngjun.roh@lge.com

Abstract. This paper presents highly optimized implementation of image
registration method that is invariant to rotation scale and translation. Image
registration method using FFT works with comparable accuracy as similar
methods proposed in the literature, but practical applications seldom use this
technique because of high computational requirement. However, this method is
highly parallelizable and offloading it to the commodity graphics cards
increases its performance drastically. We are proposing the parallel
implementation of FFT based registration method on CUDA and OpenCL.
Performance analysis of this implementation suggests that the parallel version
can be used for real time image registration even for image size up to 2k x 2k.
We have achieved significant speed up of up to 345x on NVIDIA GTX 580
using CUDA and up to 116x on AMD HD 6950 using OpenCL. Comparison of
our implementation with other GPU based registration method reveals that our
implementation performs better compared to other implementations.

Keywords: GPU, Image Registration, CUDA, OpenCL, Object Recognition.

1 Introduction

Image registration (IR) is defined as detection of the presence of complete or partial
image (test image) in a reference image. Image registration is useful in applications
like, motion tracking, machine vision, image restoration etc. This paper uses the
method of image registration based on spectral components (FFT). FFT based method
uses the property of shift theorem according to which, phase difference between two
images gives the translation between two images. Phase correlation method was first
developed by Kuglin and Hines [1] by utilizing some properties of Fourier transform.
Fourier transform is capable of determining shift between two images. So, DeCastro
and Morandi [2] proposed a modified method to determine the rotation by using
Fourier transform. The method was improved by Reddy and Chatterji [3] for
performance and accuracy which was further clarified mathematically by
Sierra et al. [4]. Recently, Rittavee Matungka (2009) details the log polar

 GPU Accelerated Real Tim

transformation [5] based im
scale of image using FFT te

The image registration
hinders its usage in real ti
increase the speed [6] [7] b
limited applications. The st
Invariant Feature Transform
complexity. Still, these me
time analysis of video and i

Performance improveme
acceptance. FFT based me
Graphical Processing Units
for acceleration of FFT base
output directly depends o
computation time. Our para
and real time performance.
registration concept, section
algorithm implementation a

Fig. 1. Reference Image (lef

2 Image Registrat

2.1 Translation

Figure 1 shows two images
represented by equation (1
shown in equation (2). App
equation (3). Translation in
I1 and I2, which is given by

Î2ሺ

me Rotation, Scale and Translation Invariant IR Method

mage registration method used to detect the rotation
echnique.

method is computationally intensive algorithm, wh
me applications. Many techniques had been employed

but they suffered from low accuracy or found applicable
tate of art technique by David Lowe [8] called SIFT (Sc
m) gives accurate template matching results with redu
ethods need significant improvement in the speed for r
images.
ent of these algorithms is of high importance for gene
ethod is inherently parallel and GPGPU (General Purp
s) with massively parallel processing cores can be utili
ed registration method. The scale and rotation resolution

on the input resolution. High resolution requires m
allelization approach gives dual benefits, i.e. high accur
This paper is organized as follows. Section 2 discussed
n 3 explains GPGPU features, section 4 details the para
and section 5 discusses the implementation results.

ft), Translated Image (center), Overlap between Images (right

tion

 I1 and I2 where I2 is shifted by ∆x columns and ∆y row
). Let us represent the FFT of any signal by symbol ₣

plying Fourier transform on both sides of equation (1) gi
n image can be calculated by inverse of Cross correlation

equation (4).

I2(x +∆x, y + ∆y) = I1 (

₣(I(x, y)) = Î(α, £) (ሺα, £ሻൌ Î2ሺα, £ሻeሺi2Пα∆x൅£∆yሻ (

225

and

hich
d to
e to
cale

uced
real

eral
pose
ized
n of

more
racy
the

allel

t)

s as
₣ as
ives
n of

(1)

(2)

(3)

226 S. Sah et al.

Fig. 2. Reference Image (left), Scaled Image (center), Scaled and Rotated image (right)

Î2ሺ஑, £ሻ Î2ሺ஑, £ሻ|Î2ሺ஑,£ሻ| |Î2ሺ஑, £ሻ| ൌ e(i2П α ∆x+ £∆y) (4)

In theory, inverse of equation (4) should give impulse function indicating the
translation in x and y direction but in presence of noise practical approach is to find
the value of ∆x and ∆y for maximum value of cross correlation.

2.2 Rotation

Suppose I1 and I2 are two images and I2 is rotated by angle φ with respect to I1.
Rotation relationship between I1 and I2 is given by equation (5). Applying Fourier
transform on both sides,

I2ሺx, yሻ ൌ 



)sin(-

)cos(

ϕ

ϕ




)cos(

)sin(

ϕ

ϕ I1ሺx െ ∆x, y െ ∆yሻ

(5)

Î2ሺα, £ሻ ൌ eሺ୧ଶП ஑∆୶ା £∆୷ሻ Î1ሺαcos ሺ߮ሻ ൅ £sinሺ߮ሻ, െαsinሺ߮ሻ െ £cosሺ߮ሻ) (6)

Where, A2 ൌ A1ሺαcos ሺ߮ሻ ൅ £sinሺ߮ሻ, െαsin ሺ߮ሻ െ £cosሺ߮ሻ) (7)

It is evident from equation (7) that magnitude of I1 and I2 are same except that the
spectrum of I1 is rotated by angle φ with respect to magnitude of I2. In order to get the
rotation angle, amplitude of I1 and I2 should be converted to polar co-ordinates. This
converts the rotational shift to translation which is shown in equation (8). Phase
correlation of polar domain can be used to get the rotation of images. A2 ൌ A1ሺ߮ െ ߮0ሻ (8)

2.3 Scaling

I1 and I2 are two images where I2 scaled version of I1 and the scaling factor is µ. This
can be represented in frequency domain by equation (9). Scaling in frequency domain
can be found by converting the Fourier transform values to logarithmic scales and
computing phase correlation of the same. It is shown by equation (10).

 GPU Accelerated Real Time Rotation, Scale and Translation Invariant IR Method 227

Î2(α, £) = Î1(α/µ, £/µ) (9)

Î2(log(α),log(£)) = Î1(log(α) – log(µ), log(£) - log(µ)) (10)

2.4 Scale, Rotation, and Translation

Using above concepts, it is clear that if image I2 is scaled, rotated and translated by µ,
φ and ∆x, ∆y with respect to I1 then it can be represented in Log-polar frequency
domain by equation (11). A2ሺlogሺαሻ , ߮ሻ ൌ A1ሺlog ሺ߮ሻ െ log ሺμሻ, ሺ߮ െ ߮0ሻሻ (11)

By computing the maxima of phase correlation of equation (11), phase angle and
scaling can be found out. In second step, reverse transformations (scale and rotation)
is applied to the test image and phase correlation is applied to the transformed image
to find the values of ∆x and ∆y.

3 GPGPU

The tasks suitable for processing on GPU are characterized by high parallelism, low
dependency between individual work elements and rather numerical character with
minimal branching. Such tasks are commonly known as data-parallel algorithms. Due
to the distinctive characteristics of GPU architecture (high speed, high latency main
memory, limited caching capabilities, limited communication with CPU, minimal
thread switching and planning overhead), the common CPU programming models
(and programming languages based on this programming models) are not suitable for
GPU programming. In order to achieve close-to-peak performance, the programmer
must consider many low level specifics of the given target architecture and therefore,
the programming model as well as the programming language must support explicit
expression of programmer’s intentions. NVIDIA’s CUDA (Compute Unified Device
Architecture) has gained a wide acceptance, however the CUDA standard is
proprietary and the intellectual property concerns led to development of an open
standard OpenCL (Open Computing Language).

The OpenCL standard was developed in cooperation with teams from ATI/AMD,
IBM, Intel, NVIDIA and others and many HW vendors and SW producers announced
support of OpenCL in their products. Unfortunately, this wide acceptance does not
dislodge the burden of hand-tuning the computational kernels for individual distinct
HW architectures. The NVIDIA GPU consists of many processing elements (PEs)
called multiprocessors. Older NVIDIA GPUs have 8 stream processors in each PE
together with 16kB on-chip local memory (called shared memory). Single PE offers
8k or 16k 32-bit registers, depending on GPU series. The Fermi-based PEs are bigger
and contain 32 or 48 stream processors. The 64kB on-chip memory can be set to two
configurations: 16kB L1 cache and 48kB local memory or vice versa. The core clock
(stream processors and local memory) is higher than the rest of the GPU. The peak

228 S. Sah et al.

memory bandwidth from global memory can be achieved only via coalesced access,
where consecutive 16 work-items (half-warp) access consecutive addresses [9]. The
ATI/AMD GPUs are based on very long instruction word (VLIW) architecture. This
architecture also consists of multiple PEs. However, compared to NVIDIA PEs, the
internal architecture is different. Each PE contains 16 stream cores, each equipped
with five stream processors (four in Cayman based 69XX GPUs). This is why
ATI/AMD GPUs have a higher raw computational performance than comparable
NVIDIA GPUs. In real life, however, it is difficult to supply the input data
sufficiently fast to keep these high-performance multiprocessors fully utilized.
Therefore, the maximal performance cannot be achieved in some tasks or badly
optimized implementations.

4 Implementation Description

Figure 3 shows the steps to detect rotation and scale of input image with respect to the
reference image. The registration process consists of two stages. First stage computes
the rotation and scale. Second stage computes the translation using scale and rotation
computed by first stage. This section discusses the parallel implementation of IR
algorithm on GPGPU.

The first step of the first stage is computation of gradient image. We have used the
Sobel gradient with 3x3 kernel for this purpose. Sobel gradient computation is a pixel
level operation and hence it is suitable to the GPGPU. Output of each pixel is the
weighted sum of surrounding pixels with Sobel operator. However, for computation
of each output pixel, nine input pixel is read which is inefficient as global memory
fetch is very slow. To increase the performance, we have proposed a novel kernel
with following features:

- Each thread of the kernel process 4x2 pixel block and the threads process
consecutive blocks. It ensures better data reusing and save some computing
instructions.

- The input data are 8-bit pixels. Each thread fetches 4x4 pixel block from
texture memory where four consecutive pixels are stored as single 32-bit
integer. Two of the threads read extra two blocks on the boundaries.

- To gather all the pixels needed for processing, two four-pixel blocks are
interchanged between threads using local memory. 32-bit data type is used
to store/read four pixels at once. Now, each thread keeps 6x4 pixel block in
registry.

- To save some computing instructions, vertical and horizontal differences
are computed in advance. Than final gradient coefficients are computed.

- The results are stored via coalesced access to the global memory.
- This approach is more than 3-times faster than Sobel sample codes from

CUDA SDK or AMD Accelerated Parallel Processing (APP) SDK.

 GPU Accelerated Real Time Rotation, Scale and Translation Invariant IR Method 229

Fig. 3. Rotation and Scale detection

FFT of Sobel output for both the images is computed and the coordinate is shifted to
the center. For this purpose, we have used the FFT library (cufft) provided by CUDA
and FFT OpenCL library provided by AMD APP. In order to transform rotation and
scale as translation, FFT is mapped to from the rectangular to log polar (RLP)
coordinate. As there is no integer mapping between log polar and rectangular
coordinate, bilinear interpolation method is used. Height of the image is mapped to 180
degrees in polar co ordinate using angular resolution Δθ as in equation (11). As the log
conversion is non-linear, corresponding base selection (equation (12)) is required. ∆θ ൌ PIH , where H െ Image height (11)b ൌ pow ቀ10, ୪୭୥ሺWሻW ቁ where W – Image width (12)x ൌ r כ cosሺ∆θሻ ൅ x0 y ൌ r כ sinሺ∆θሻ ൅ y0
Where, x0, y0 – center of image

x, y – transformed co ordinate of image

(13)

Using base (b) and angle resolution (Δθ) image is converted to the log polar with
amplitude ranging from 0 to bW and angle varying between 0 to 180 degrees as per
equation (13). RLP implementation is straightforward on GPU as it is pixel-based
operation. To optimize the performance further, texture fetch is used as bilinear
interpolation uses four pixels which are selected by taking two integer x and two
integer y values on the boundary of real values computed using equation (13).

Phase correlation of log polar values of reference and test image is calculated and
the location maximum of inverse FFT gives values of rotation and scaling by applying
equation (11) and (12). Phase correlation is computationally intensive operation on
CPU but its pixel wise operation makes it suitable for optimization on GPU.
Computation of maximum also consumes considerable time. In addition, it is not a
pixel operation and involves dependency during computation. We have used a fast
two-stage approach to compute the maximum of array together with its coordinates.
The first stage is parallel as it searches for the individual maxima in partitioned data.
The number of parts should be high enough to ensure full GPU occupancy. But too
high number of parts decreases the performance. The second stage computes the final
maximum and coordinates. Both the kernels/stages are based on a well-known
parallel reduction scheme [10].

Second stage of IR algorithm involves translation detection by applying reverse
transformation of image (rotation and scale obtained during stage 1). The scaling and

230 S. Sah et al.

rotation is done by a simple kernel using texture memory where bilinear interpolation
is enabled. Translation is obtained using transformed image instead of test image in
stage 1 and repeating all the steps in stage1. Figure 4 shows the breakdown of tasks
and overall GPU utilization for FFT based IR method.

Fig. 4. GPU utilization of FFT based IR method

5 Results

We have implemented the IR method on different GPUs using CUDA and OpenCL.
Table 1 shows the results on three GPUs. GTX 580 and GTX 260 are NVIDIA cards
where CUDA was used. The last one is AMD Radeon HD 6950 with OpenCL. All the
cards were running on Intel Core i7 host CPU with 3.2GHz clock frequency, 8MB
cache and 4 GB RAM. We have got very high speed up compared to the CPU version.
Our implementation achieves the maximum speed up of 345 times for image size 2k x
2k in GTX 580. The OpenCL on AMD GPU is significantly slower. There are a few
reasons for the lower performance. AMD OpenCL implementation does not support
fast memory transfers through PCI. These transfers take almost a half of total time for
small images. The FFT kernels also take significantly more time. It seems that 2D
FFT does not fit on AMD GPU architecture well or the AMD FFT library is not as
optimal as the NVIDIA cuFFT library. Most of the other kernels are memory-
intensive and high AMD GPU algorithmic performance cannot be utilized. Higher
overhead of OpenCL API also degrades performance of simple and fast kernels.

We can see in graph of figure 5 that minimum number of frames per second (fps)
processed is approximately 34 for image size 2048x2048 for GTX 580. Point worth
mentioning here is that the size of test image does not affect the performance as we
have resized the test image to reference image size first and then processed the entire
image. Performance is less for HD 6950 and GTX 260 but it is still real time. Hence,
the algorithm performs in real time for all the practical image sizes. Comparison in
Table 1 assumes single threaded code with default compiler optimization on CPU.

 GPU Accelerated Real Time Rotation, Scale and Translation Invariant IR Method 231

Hence the speed up is very high. So, we have benchmarked our implementation with
other implementations proposed in literature. Table 2 summarizes some of the
methods that include the state of the art method proposed by David Lowe [8]. To
make the comparison fair, we have mentioned the GPU configuration used in earlier
papers. Table 2 also suggests that our implementation on GPU performs faster
compared to all other methods. Figure 6 shows the output of image registration
method and we have found that it is able to detect objects accurately with a resolution
of 0.01. Only noticeable disadvantage of our method is that it does not have high
accuracy for scale factors more than 2.5 as the features in image above these scale
values are not recognized properly by this method.

Table 1. Performance comparison of CPU and GPU for FFT based Image Registration method

Image Size
Time
(ms)
CPU

Time(ms) / Speed up
GTX 580, CUDA

Time(ms) / Speed up
GTX 260, CUDA

Time(ms) / Speed up
HD 6950, OpenCL

512 x 512 513 2.6 / 197x 4.9 / 105x 17.6 / 29x
1024 x 1024 2240 7.7 / 291x 18.3 / 122x 31.5 / 71x
2048 x 2048 9972 28.9 / 345x 86.3 / 116x 85.9 / 116x

Table 2. Performance comparison with other Image Registration methods

Method Image Size Time
(ms)

GPU
specification

Comments

(1) SIFT [11]

1k x 1k

160

GPU implementation

(2) SURF [11] 1k x 1k 70 GTX 260 GPU implementation
(3) Grayscale [6] 1k x 1k 100 GTX 260 Very low scale and rotation resolution
(4) ORB [12] 640x480 15.3 NA Implemented for embedded processor
(5) Image
Matching [13]

0.5k x 0.5k 6.8 GeForce
8800

GPU Implementation

 1k x 1k 19
 2k x 2k 71

Fig. 5. Performance of IR method for different Image size, GPU and APIs

232 S. Sah et al.

Fig. 6. Reference Image (left), test image (center), Registered Image (right)

6 Conclusion

This paper presented the real time implementation of image registration method on
GPGPU. We have implemented the method on graphics processors of different make
to evaluate our results. We have found that the algorithm has real time performance
for image size up to 2k x 2k when most of the registration methods fail to deliver the
real time performance. We have not compromised in accuracy for this optimization
even for larger image since angle and scale resolution is expected to be reduced to
increase the performance. In our implementation, we have not reduced the angle and
scale resolution but still able to get the real time performance. The high performance

Living room
Rotation – 135O
(Actual – 135)
Scale – 1
Actual- 1

Triangle
Rotation – 315
Actual – 315
Scale – 1.35
Actual- 1.35

Res chart
Rotation – 335
Actual – 335
Scale – 1
Actual- 1

Mobile
Rotation – 21
Actual – 21
Scale – 1.04
Actual- 1.04

 Peaks
Rotation – 200
Actual – 200
Scale – 1.58
Actual- 1.60

 GPU Accelerated Real Time Rotation, Scale and Translation Invariant IR Method 233

of this algorithm is due to novel parallelization strategy and intelligent use of different
types of GPU memory like texture and shared memory. We have achieved a
maximum speed up of 345 times compared to the CPU version for CUDA on GTX
580 and 116 times on Radeon HD 6590 using OpenCL. We have also implemented
the algorithm on GPU from other vendors than NVIDIA to make it usable for all
graphics processors. The results show that it has comparable accuracy with other
implementations for scale factor up to 2.5 and for all rotation angles. In addition, the
resolution of angle and scale factor is as low as 0.01. Most of the image registration
methods suffer from performance drawbacks. FFT based image registration has
sufficient accuracy for machine vision problems and our parallel implementation on
graphics processors makes it usable for real time applications.

Acknowledgement. This research was supported by the Grant Agency of the Czech
Republic, project No. GAČR P103/12/G084.

References

1. Kuglin, C.D., Hines, D.C.: The Phase Correlation Image Alignment Method. In:
Proceedings of the IEEE 1975 International Conference on Cybernetics and Society, New
York, pp. 163–165 (1975)

2. DeCastro, E., Morandi, C.: Registration of Translated and Rotated Images Using Finite
Fourier Transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence,
700–703 (1995)

3. Reddy, B.S., Chatterji, B.N.: An FFT-based Technique For Translation, Rotation, and Scale-
Invariant Image Registration. IEEE Transactions on Image Processing 5, 1266–1271 (1996)

4. Sierra, I.: Geometric foundations for the uniqueness of the FFT- based Image Mosaicking,
With The Application to Detecting Hidden Text in Web Images. M.S. Thesis, University
of Texas at El Paso, El Paso, TX (131)

5. Rittavee, M.: Studies on log-polar Transformation For Image Registration and
Improvements using Adaptive Sampling and Logarithmic Spiral. PhD. Thesis, Graduate
School of Ohio State University, 5–40 (2009)

6. Kim, H.Y., de Araújo, S.A.: Grayscale Template-Matching Invariant to Rotation, Scale,
Translation, Brightness and Contrast. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS,
vol. 4872, pp. 100–113. Springer, Heidelberg (2007)

7. Ghafoor, A., Iqbal, R.N., Khan, S.: Robust Image Matching Algorithm. Video/Image
Processing and Multimedia Communications, 155–160 (2003)

8. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision, 91–110 (2004)

9. The CUDA C best practices guide, version 3.2. NVIDIA Corporation (August 2010),
http://developer.download.nvidia.com/compute/cuda/32prod/
toolkit/docs/CUDACBestPracticesGuide.pdf

10. Kirk, D.B., Hwu, W.W.: Programming massively parallel processors: A hands-on
approach. Morgan Kaufmann, San Francisco (2010)

11. Martinez, M., Collet, A., Srinivasa, S.S.: MOPED: A scalable and low latency object
recognition and pose estimation system. In: Robotics and Automation (ICRA), pp. 2043–
2049 (2010)

12. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An Efficient Alternative to SIFT
or SURF. In: International Conference on Computer Vision (2011)

13. Chariot, A., Keriven, R.: GPU Boosted Online Image Matching. In: 19th International
Conference on Pattern Recognition, pp. 1–4 (2008)

	GPU Accelerated Real Time Rotation, Scale
and Translation Invariant Image Registration Method
	Introduction
	Image Registration

	Translation
	Rotation
	Scaling
	Scale, Rotation, and Translation

	GPGPU
	Implementation Description
	Results
	Conclusion
	References

