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Abstract
The present paper focuses on the current handling of target fea-
tures in the unit selection approach basically requiring huge cor-
pora. In the paper there are outlined possible solutions based on
measuring (dis)similarity among prosodic patterns. As the start
of research, the feasibility of (dis)similarity estimation is ex-
amined on several intuitively chosen measures of acoustic sig-
nal which are correlated to perceived similarity obtained from a
large-scale listening test.
Index Terms: speech synthesis, unit selection, target features,
prosodic patterns, perceived similarity, signal similarity, multi-
dimensional scaling

1. Introduction
Although there is a notable shift towards HMM-based speech
synthesis, mainly due its much lower storage requirements and
the possibility to express different affective states (not only lim-
ited to emotions) or speaker identities, speech generated by unit
selection is still generally evaluated as more natural, despite the
occurrence of occasional glitches.

One of the biggest problems in unit selection, however, is
the coverage of units in all different speaker attitudes or pro-
sodic styles (worse still, affective states). It is estimated in [1]
that recording even several hundred thousand sentences will not
be enough to guarantee the full coverage of target feature com-
binations thoroughly describing even basic prosody variability.
Therefore, unit selection substitutes the units required to syn-
thesise but not contained in the given speech corpus with units
that have the largest match of values in a set of (usually) ad-hoc
designed target features and their prominences.

The main problem, we believe, is that “traditional” target
cost aims to measure the suprasegmental features (not only pro-
sodic ones in general) of synthesised speech, whereas speech
units like diphones cannot, in principle, express any supraseg-
mental behaviour at all. The target features, thus, assign and fix
to the units only those suprasegmental properties which the units
had when surrounded by their corpus neighbours in a sequence
long enough to express a suprasegmental property. Target cost,
as used today, is set to strive for putting the units into the same
suprasegmental surroundings as they originally had in the cor-
pus, which is achieved when target features match. This is the
cause of the small coverage, resulting in possible glitches when
the surroundings exact enough do not exist in the corpus.

As the individual units cannot express any suprasegmental
feature, without neighbours each unit may be expected to be
able to express a range of different suprasegmental patterns that
is larger than the one in which the unit is recorded in the corpus
(unit synonymy/homonymy as introduced in [2]). If we were
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able to arrange each unit in the synthesised phrase to be sur-
rounded by otherappropriateunits, we would get natural sound-
ing speech regardless of the suprasegmental patterns in which
each of the units employed originated. How to achieve this is,
naturally, neither obvious nor easy, but we suppose that the abil-
ity of measuring perceptual similarity of speech is a possible
way, as described in the next section.

2. Why to Measure Perceptual Similarity
The idea of the relation between perceptual similarity measure
and unit selection is rather simple: let us have a suprasegmen-
tal pattern1 pronounced by a speaker in his/her natural man-
ner, and let us somehow exchange units in the pattern. If there
are variants of the original pattern sounding perceptually sim-
ilar, target properties of units in those new variants can be ex-
tended to reflect the new positions into which the units fit (units
homonymy). Or, looking at the idea from the other side, the
set of all thinkable and feasible target descriptions of each unit
in all their homonymous positions (within the natural-sounding
variants) can be analysed in order to find a minimal set of the
most descriptive and mutually uncorrelated features. For that
set of features, the target cost for a unit in any of its homony-
mous positions should be considerably lower than it is for other
positionings of the unit.

One of the problems with similarity perception on speech
signal is that speech is of varying nature, passing sequentially
through time (contrary to images or various stimuli represented
by text, on which similarity perception has already been stud-
ied e.g. in [3, 4]). Therefore, it is basically impossible to
authentically evaluate or measure how similar two variants of
a whole phrase sound. Keeping this in mind, we decided to
identify prosodic patterns withprosodic words2 (sometimes also
called phonemic words), which are short enough to obtain reli-
able human evaluation of how similarly any two variants sound,
and, simultaneously, they are considered natural constituents of
rhythmic and prosodic structure in Czech [5] (and such a kind
of prosodic constituents is common to most of rhythm-based
languages). Also, we can afford to process each pattern (pro-
sodic word) independently. It may seem that this independence
is likely to result in the loss of relation to the overall prosody
of the whole phrase, and, as a consequence, prosodic patterns
could potentially be placed randomly through the phrase during
synthesis (regardless of the fact that each individually sounds
natural), which would then lead the synthesised phrase to ex-

1For the purposes of this research, suprasegmental prosodic pattern is
defined as the sequence of speech units which constitutes theperception
of the rhythmic, intonation and phonation qualities of speech; moreover,
the pattern does not only consist of prosodic description but it is a part
of speech which can be listened, understood and evaluated.

2To keep the generality of descriptions, the termpatternwill still be
used in the paper, always referable to prosodic words, though.



press a corrupted communication function, if functionally in-
volved units were placed somewhere in the phrase except the de-
termined position. However, the positioning of patterns within
the phrase can be kept as an extra feature, incorporating posi-
tion diversity into homonymy description in cases when a unit
instance is equally used in different patterns within phrases.

Let us outline the future practical utilisation of perceptual
similarity measure, supposing a reliable measure at our disposal.
Being inspired by [6], a large number of variants of a natural
pattern (i.e. prosodic word existing in the corpus) can be built
by the raw concatenation of unit sequences with various length,
while any part of the natural pattern is excluded from use. A
sufficient number of those variants sounding the most similar
(and natural, therefore) to the original pattern, as determined by
the similarity measure technique, would be considered for fur-
ther analysis. In it, the features feasible for the target description
of each unit in its new contexts (given by the actual position in
particular variants) might be examined with the aim to either ex-
tend the set of possible target descriptions of a unit, or to include
only features relevant for the description of a unit matching all
the variants where it appeared.
An alternative is to create the variants by replacing a single
unit in the natural pattern instead of generating the whole pat-
tern. Again, the variants sounding the most similar to the pattern
would be determined and analysed in the same way as in the first
case, with the difference that only one unit will be examined in
each variant. Although it may seem to lead to a simpler measure
of similarity, due to the variants being equal to the original ex-
cept for that one unit, the number of patterns to analyse is much
higher. Also, the building of the reference similarity perception
model is much harder (if at all possible), since many more pat-
terns must be evaluated in listening tests – see Section 3.1. And
finally, it is arguable how capable this approach is to model the
reality, as the form of unit sequences determined by unit selec-
tion is more similar to the way of variants building in the above
consideration than to this model. Therefore, the paper is rather
focused on employing the whole patterns, while we expect that
the experience we gained with similarity measure is fairly gen-
eral and adaptable for both kinds of approaches, whichever will
be chosen.

The approach also poses difficulty regarding the danger of
combinatorial explosion. A reasonable, though not optimal, so-
lution is to examine the similarity on a reasonable subset of vari-
ants chosen at random (as also proposed and discussed in [6]),
and to use massive parallel or grid super computing.

3. The Measure of Perceptual Similarity

To formalise further reading, letA andB be realisations of two
prosodic patterns. Let thenes(A, B) be theirmeasurable simi-
larity computed on the basis of themeasurable propertiesof the
patterns (e.g. their signal), and lets(A, B) be theirperceived
similarity representing unmeasurable true reality how similarly
A andB are perceived by humans. For practical purposes, it is,
however, simpler to work in terms ofdissimilarity – for mea-
surable dissimilarity it can be defineded(A, A) = 0, whereas
es(A, A) → Z (whereZ can vaguely be defined as a posi-
tive number sufficiently large), and it can be considered that
ed(A, B) ≈ Z − es(A, B). In the case of perceived dissimilarity,
the situation is not so straightforward, as there is no guarantee
of perceived dissimilarity being a symmetric counterpart of the
similarity. In [4] the authors showed, using Tversky’s contrast
model [7], that people tend to attend more to common features

of stimuli when evaluating similarity and to distinctive features
when evaluating difference. It may cause an object pair to be
evaluated as more similar and more different at the same time,
if compared to the same evaluation of another pair. However,
in the case of acoustic stimuli (evaluated pair of prosodic words
in our case) comparison, we presume that the existence of a per-
ceptually distinctive feature in compared patterns is likely to im-
ply higher dissimilarity than it would when similarity is evalu-
ated. Without evidence, human acoustic perception seems to be
better in distinguishing difference (it is easier) than in recognis-
ing similarity.

Let us now assume that there is a deterministic relation be-
tween the two dissimilarities

F : d(A, B) → ed(A, B) ∀A, B (1)

thus having a data set with known behaviour ofd, we need to
find suched which is significantly correlatedwith thed. Then,
we can useed to estimated for data not found in the dataset.

3.1. Perceived Dissimilarity

We assumed in Equation (1) that we haved(A, B) at our dis-
posal. However, to be exact, what we only have is its esti-
mate obtained by listening tests3, averaging the different opin-
ions (judgements) of people regarding what sounds similar and
what does not (and to what extent), expecting an “objectiveness”
to emerge on the basis of cross-listener agreement.

To obtain the dissimilarity judgements, we carried out lis-
tening tests described in detail in [8]. There were 63 listen-
ers participating in them, each evaluating the level of dissim-
ilarity on 780 pairs (including some repeated for validation)
combined from 17 prosodic words. Where possible, the words
were chosen so that their variants covered different positions in
phrases and different melody patterns with at least two exam-
ples in each. The signals of the variants were obtained from a
female corpus recorded for our TTS system ARTIC [9], each
word cut on boundaries given by automatic segmentation, man-
ually checked and faded in and out to suppress the influence of
surrounding words. The listening tests were carried out through
specially developed web application, and they were financially
well-rewarded. Each participant has been familiarised in detail
with the purposes of the tests as well as with the examples delim-
iting exemplary evaluations. The levels of dissimilarity feeling
were defined as

• clearly dissimilar– clear after the very first listening,
• dissimilar – quite close but still recognisably not the

same,
• quite similar/indistinguishable– being very close even if

differing after careful listening, or not recognisable at all.

The dissimilarity was requested to be evaluated for four different
aspects (see [8]), while the paper focuses onoverall dissimilarity
intended to evaluatedifference as such, on all the qualitative
levels on which the acoustics are perceived and a difference can
be felt. During results inspection we confirmed that for each
word at least one pair soundingquite similar/indistinguishable
exists.

To obtain a (dimensionless) value representing dissimilarity
d(A, B), ∀A, B, non-metric multidimensional scaling (MDS)
of the listening test results was carried out (all variants of one
prosodic word analysed at once, although independently for

3In [3, 10], the dissimilarity evaluation obtained in the formof a set
of listener responses is referred to judged dissimilarity.



each of the prosodic words). This technique, also calledgeo-
metric model[10], assumes that a perceptual effect on evaluated
stimuli is inversely related to their distance in an–dimensional
space; it has been used for quite a long time in cognitive science,
and for the first time in [11] for synthetic speech quality evalu-
ation. The dissimilarity matrix required by MDS was created
in such a way that each cell represented the number of times
when a pair of prosodic words was perceived asclearly dissimi-
lar, plus the half of the number of times when the pair was per-
ceived asdissimilar. The dimensionn was chosen ad-hoc to 3,
the experiments with other dimensions had no significant impact
on the results, though. The dissimilarity estimated(A, B) was
then simply computed as Euclidean distance between stimuliA
andB in the 3D space. Although there is some evidence that
all the distance axioms valid in metric space are not necessar-
ily always valid in the perception [7, 10], this is, however, not
considered in this experiment.

3.2. Measurable Dissimilarity

Let us expect, for the purposes of this paper, that the perceived
dissimilarityd(A, B) in Equation (1) matches the dissimilarity
really perceived by humans as closely as possible. Now we need
to find such a measure on signal which for each pair of prosodic
patternsA, B (prosodic words) would return a valueed(A, B)
significantly correlated withd(A, B).

In our first attempt, we have chosen pitch-synchronous anal-
ysis of compared patterns, with frames of speech signal two
pitch-periods long. We can define measurable distance be-
tween framesi andj as edij(A, B) , wherei = 1, 2, . . . , I and
j = 1, 2, . . . , J are the number of frames in patternsA and
B. To obtain the measurable dissimilarity of the whole patterns,
we have chosen symmetric DTW algorithm slightly modified to
ensure that only frames from the same phones are compared to-
gether, with overlap to1/3 of the preceding and following phone
allowed. The measurable dissimilarity is thus defined as

ed(A, B) = min
{I(k),J (k),K}

 

K
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(edI(k),J (k)(A, B) ∗ wk)

!

(2)
whereI(k) andJ (k) are functions warpingkth step in DTW
into coordinates of compared frames in the plane spanned by
A and B pattens (i.e.I(k) = 1, . . . , I for k = 1, . . . , K),
Weight wi,j is path penalty encouraging diagonal stepswk =
1, I(k) 6= I(k − 1)∧J (k) 6= J (k − 1), and penalising steps
up and rightwk = 2, I(k) = I(k − 1) ∨ J (k) = J (k − 1).
As there is requirement fored(A, A) = 0, it must be true that
edij(A, A) = 0, ∀i = j.

In the present paper we have experimented with the follow-
ing, intuitively chosen, methods foredij computing (note that the
compared patterns are always different variants of one prosodic
word):

Waveform dissimilarity (WFD) was motivated by the pre-
sumption that signal (dis)similarity is likely to imply perceived
(dis)similarity, at least for voiced phones. Thus, to measure the
dissimilarity on voiced frames, cross-correlation was applied on
i, j pairs of von Hann window-weighted frames. For unvoiced
segments, where it is meaningless to correlate signals, the dis-
similarity was estimated simply by the ratio of the zero-crossing
values of frames+ their ratio of RMS, which led to values also
in 〈0, 1〉 interval. The comparison of voiced and unvoiced seg-
ments resulted in maximum dissimilarity value1.0.

Spectra comparison was chosen as an alternative to cross-

correlation, as it may be objected that the comparison of the
spectral properties of signal is more likely to aptly capture simi-
larity of the signals. In the paper we present similarity computed
as the Euclidean distance between the raw magnitude of FFT
points of frames (FFTr). Besides, we have also attempted to
weigh the spectrum by equal loudness contour (FFTl) to follow
how magnitudes of different frequencies affect human hearing,
and to smooth the spectra by moving average filter of 10 points
(FFTs

r and FFTsl ). However, it either did not lead to a significant
difference, or the results were even worse.

Singular value decomposition (SVD) is an alternative ap-
proach employed in [12] for the measure of join cost. The author
showed that the decomposition can be considered as an alterna-
tive to magnitude spectrum, which may not explicitly expose
a frequency, but it contains both power and phase information
“encoded” in the values. Moreover, compared to the spectrum,
it is also localised in time (uses frames) but global in scope, as
all frames (from all variants of one prosodic word in our case)
are decomposed using the same transform kernel.edij(A, B)
was computed as the cosine of the angle between transformed
frames, as inferred in [12].

MFCCs are widely used also in unit selection technique for
the measure of concatenation smoothness, and they were even
used for the measure of distance betwen units (of the same
phone type) in a well-known work [13]. To getedij(A, B), Eu-
clidean distance between 12 coefficient MFCC vectors of the
given frames was used (MFCCE), as it often appears in concate-
nation cost. Similar to [13], the dissimilarity was also computed
as Mahalanobis distance (MFCCM ), which displayed slightly
worse results, however.

4. Results
For each pair of all the 780 pairwise combinations of the variants
built from the given 17 prosodic words, the perceived dissimi-
larity d(A, B) was determined from MDS representation of the
corresponding prosodic words. Measurable distanceed(A, B)
was also computed using the chosen measures between each of
the same pairs, and correlated tod(A, B). In Table 1, the cor-
relations are summarised, together with the number of variants
(patterns) being combined – forn variants, the correlation was
computed fromn(n − 1)/2 pairs ofd(A, B) and ed(A, B) val-
ues.

It can be seen that the correlations obtained are ranging from
highly correlated to virtually uncorrelated. We expect that it
is not related to a character of the stimuli, as there are no sig-
nificant comparable tendencies in the phonetic structure of the
most “successful” prosodic words. It is worth noting that al-
though SVD, as presented in [12], did not distinguish between
the voicedness of segments, the use of unvoiced segments mea-
sure in the same way as for WFD slightly increased correlation
to 0.531. For other types of measure it has not been examined,
as they provide distance values far higher than〈0, 1〉 interval.

Let us see how the individual measures are correlated, and
which are thus likely to compare similar properties of speech. In
Table 2, the correlation ofed(A, B) values for all 780 word-pairs
are shown. The values indicate that MFCC and waveform-based
measures seem to capture similar properties of the signal. The
FFTs

. , MFCCM or SVD modifications of measures displayed
correlation higher than0.95 and thus they are not included in
the table.

To obtain an idea about the validity of results we need to
have some knowledge about the reliability of the reference eval-



Table 1:The correlation ofed(A, B) to d(A, B) for “the best”
measures. Thewordsare printed in SAMPA alphabet, each hav-
ing patterns no. variants being combined together.

Patterns no. + word WFD FFTr SVD MFCCE

6 spolupra:tse 0.658 0.511 0.671 0.597
6 pru:mislovi:x 0.888 0.512 0.666 0.388
6 potravin 0.169 0.847 0.085 0.633
7 za:kazJi:ku: 0.562 0.814 0.516 0.581
7 vminulosci 0.765 0.888 0.640 0.783
7 nasvjece 0.904 0.866 0.689 0.888
8 novina:P\u:m 0.743 0.681 0.715 0.740
8 nemu:Zeme 0.478 0.550 0.444 0.273
9 pozornost 0.773 0.831 0.819 0.831

10 informatsi: 0.757 0.765 0.808 0.653
11 konkurentse 0.526 0.703 0.284 0.467
11 t Slovjeka 0.689 0.696 0.579 0.576
12 hospoda:P\stvi: 0.267 0.532 0.071 0.344
13 republitse 0.344 0.709 0.288 0.445
13 rospotStu 0.360 0.742 0.195 0.536
14 proble:mu: 0.674 0.639 0.544 0.736
14 zdu:razJil 0.106 0.492 0.113 0.209

Average: 0.568 0.693 0.478 0.569

Table 2:The correlation of some ofed(A, B) measures.

WFD FFTr FFTl SVD
MFCCE 0.907 0.797 0.734 0.818
SVD 0.809 0.599 0.694
FFTl 0.601 0.855
FFTr 0.682

uation, which is a topic discussed in [8] – although thed(A, B)
can only emerge from a wider range of subjective opinions, there
still may be unaccountable4 answers in the test distorting the
measure. Moreover, even when there is non-accidental cross-
participant agreement in evaluations (mentioned in Section 5),
it does not necessary imply that listeners evaluated what we in-
tended them to do. And with unreliabled(A, B) we cannot de-
termine if ed(A, B) measures similarity, even if it really does.
Therefore, we need to confirm which of the dissimilarities is
likely to fail, i.e. if d(A, B) is close toquite similarbut ed(A, B)
is close toclearly dissimilar, and we perceiveA andB as very
similar, it isd(A, B) which is correct. We focused on WFD and
FFTr, and analysed five to eightAB pairs with the most differ-
ent d(A, B) and ed(A, B) values from three the most uncorre-
lated word pairs, and three suchAB pairs from the other pairs –
in other words, we checked ifd(A, B) is what we hear in cases
where ed(A, B) is in disagreement. In 109 pairs in total, with
13 items overlapping for both WFD and FFT, we have found
thatd(A, B) was correct (or close to our subjective opinion) in
103 cases (94%) for WFD, and in 98 cases (90%) for FFT. It
confirms that presenteded(A, B) are not robust measures.

5. Conclusion
It can be seen that, unfortunately, none of the intuitively cho-
sen measures examined provides a basis robust enough to be
used for target features definition as proposed in Section 2, the
most questionable being the variability among individual words.
Other ways ofed(A, B) measure must, therefore, be examined –

4The principle of listening tests does not consider any answer as
“bad”, but there may be answers which are in clear disagreementwith
test instructions.

either they are based on the idea of perceived dissimilarity being
a deterministic consequence of signal dissimilarity, or they are
inspired by Tversky’s feature contrast model [7] or fuzzy fea-
ture contrast model [3] (it will, however, require the definition
of predicates). Moreover, the behaviour of dissimilarity mea-
sures should also be verified on other voice(s).

Although it was shown thatd(A, B) is close to our sub-
jective opinion in the majority of examined cases, careful ver-
ification of listener responses aiming to determine unaccount-
able answers is crucial – the cross-participant agreement com-
puted by means of Fleiss’ kappa [14] is only0.21, which may be
enough to confirm (on significance level0.05) that the observed
agreement is not accidental, and, realising the vague nature of
similarity, it shows that a phenomenon of prosodic patterns sim-
ilarity is perceived by humans. However, our preliminary ex-
periment, where 18 randomly chosen test participants revised
their answers with the highest likelihood of miss (determined as
described in [8]), increased the kappa at least by0.1.

Finally, when building the MDS dissimilarity matrix, there
is also the possibility to employ the likelihoods of evaluation
confidence for individual listening test participants [8]. The
choice of MDS technique should be critically revised as well.
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[2] D. Tihelka, J. Matoǔsek, “Unit selection and its relation to sym-
bolic prosody: a new approach”, in Proc. of Interspeech 2006,
pp. 2042–2045, 2006.

[3] S. Sanitini, R. Jain “Similarity measures”.IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 21, pp. 871–883,
1999

[4] A. Tversky, I. Gati, “Studies of similarity”,Cognition and Cate-
gorization, pp. 79–98, 1978.
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