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Abstract
In the paper we present two techniques improving the recogni-
tion accuracy of multilayer perceptron neural networks (MLP
ANN) by means of adopting Speaker Adaptive Training. The
use of the MLP ANN, usually in combination with the TRAPS
parametrization, includes applications in speech recognition
tasks, discriminative features production for GMM-HMM and
other. In the first SAT experiments, we used the VTLN as a
speaker normalization technique. Moreover, we developed a
novel speaker normalization technique called Minimum Error
Linear Transform (MELT) that resembles the cMLLR/fMLLR
method [1] with respect to the possible application either on the
model or features.

We tested these two methods extensively on telephone
speech corpus SpeechDat-East. The results obtained in these
experiments suggest that incorporation of SAT into MLP ANN
training process is beneficial and depending on the setup leads
to significant decrease of phoneme error rate (3 % – 8 % abso-
lute, 12 % – 25 % relative).
Index Terms: speaker adaptive training, SAT, TRAPS, VTLN,
neural network, phoneme recognition

1. Introduction
The Speaker Adaptive Training approach is used routinely dur-
ing the construction of state-of-the-art GMM-HMM recogni-
tion systems. Application of SAT leads to more robust per-
formance characteristics, lower complexity of models and in-
creased recognition performance. On the other hand, the recog-
nition phase is slightly more complex and an additional diariza-
tion module is needed.

On the other hand, according to our knowledge, no research
directed on SAT in the field of neural networks has been re-
ported. Therefore, we decided to investigate this task and find
out, if the proposed approach is viable. Besides answering the
question of recognition accuracy improvement, we tried find an-
swers to the following questions:

• Is it reasonable to assume that the ANN itself is able to
learn ”how to normalize” the speakers?

• If it is so, to what extent? Is the normalization ability
backed up by the size of the ANN?

• Is the size of ANN the only factor limiting the general-
ization of the ANN? Does the TRAPS frame [2] (span-
ning about 300 ms) contain all the information needed
for speaker normalization?

2. TRAPS parametrization
The used TRAPS feature vectors are constructed from the log-
output of mel-filter bank. The intention of this section is only
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Figure 1: A scheme of training of SI model

to explain the terms used further in this paper, the full process
of the construction is described in detail in [3].

Assume for the given k-th frame of speech, the vector of
mean-normalized log-outputs from the mel-filter bank is ccc(k) =
[c1(k), c2(k), . . . , cN (k)], whereN is the number of frequency
bins and K is the total number of feature vectors.

The vector of D consecutive outputs of the p-th filter bank
cccp(k) = [cp(k − D + 1), . . . , cp(k)], p = 1, . . . , N is then
decorrelated by a D ×NΨ, NΨ ≤ D matrix ΨΨΨ

c̃ccp(k) = cccp(k) ·ΨΨΨ p = 1, . . . , N (1)

Usually, the ΨΨΨ matrix is a discrete cosine transform ma-
trix. The vectors c̃ccp(k), p = 1, . . . , N , are merged together,
yielding the TRAPS vector c̃cc(k) of size M , M = NΨN ,
c̃cc(k) = [c̃cc1(k), . . . , c̃ccp(k), . . . , c̃ccN (k)]. The vector c̃cc(k) is then
used as the input xxx(k) in eq. (2).

The TRAPS feature vectors are usually quite long, since
they span several hundreds of milliseconds of the original
acoustic track. The features are fed into the ANN trained to
produce phoneme posterior probabilities.

3. Multi-layer perceptron artificial neural
network

Any forward operation of aL-layer MLP ANN can be described
as follows

a0a0a0(k) = xxx(k)WWW 0 (2)

yyyi(k) = ~gi(aaai−1(k))

aaai(k) = yyyi(k)WWW i

i = 1, . . . , L− 1 (3)

zzz(k) = ~gL(aaaL−1(k)) (4)

where theDi×Di+1 matricesWWW i, i = 0, . . . , L−1, are called
weight matrices and the vector functions ~gi, i = 1, . . . , L − 1,
are called transfer functions. The weight matrices are trained to
minimize a loss functionEEE that is usually of the following form

EEE(ZZZ,TTT ) =

K∑
k=0

E(zzz(k), ttt(k)) (5)

where the K ×M matrixZZZ represents network outputs and the
K × M matrix TTT represents the target values (teacher data).
The pair of k-th rows of the matrices ZZZ and TTT represents the
k-th output zzz(k) and the target vector ttt(k).
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Figure 2: A scheme of training of a SAT model

The most usual choices of function E are EMSE (i.e. mean
square error) or cross-entropy EXENT. Usually, the MLP ANN
for phoneme recognition has sigmoid transfer function in hid-
den layers and softmax transfer function in the output layer and
are trained using EXENT criterion. Such configuration guaran-
tees that MLP ANN output will converge to posterior probabil-
ities. See [4] for more info.

For the training there is a wide variety of methods to use.
The most common one is the backpropagation and its modifica-
tions.

4. Speaker Normalization
There exists a significant gap between recognition scores of
speaker-independent (SI) models and speaker-dependent (SD)
models — the SD models reportedly perform better. Obviously,
the reason of this gap lies in the speaker variability. The vari-
ability comprises the linguistic background, emotional state and
physical attributes of the speaker.

Modeling the variability among speakers within the SI
model is a more complex task than to use the SD model. This
increased complexity leads to increased training and more im-
portantly increased recognition time. Moreover, despite of the
increased complexity, the performance of the SI model is often
inferior.

4.1. Vocal Tract Length Normalization

One of the causes of speaker variability is a different length of
the vocal tract. The different length of the vocal track manifests
itself in shift of the voice pitch in the frequency spectrum. There
is a variety of methods that deal with this problem.

The common one is called VTLN (Vocal Tract Length Nor-
malization). The application of this method is usually tied to use
of MFCC coefficients, albeit the principle is general. During the
computation of centers of frequency bins of the mel-filter bank,
the computed centers are shifted (warped) in a non-linear fash-
ion to reflect the shift of the voice pitch of the given speaker
relative to the ”normalized” speaker.

Usually, the transforms is expressed as ω̃ = f (ω, αs),
where ω is the original frequency in the mel-domain, ω̃ is the
transformed mel-frequency and αs is the speaker-dependent
normalization factor. The function f() is usually piecewise lin-
ear transform [5] or bilinear transform [6].

For our experiments, we used the bilinear transform. The
bilinear transform is defined as

ω̃ = ω + 2 arctan

(
(1 − α) sinω

1 − (1 − α) cosω

)
(6)

and the value α is usually determined by means of grid-search
on the space of utterance likelihood.

The VTLN is reported to be used routinely in TRAPS-MLP
framework [3], however, to our best knowledge, it is used as a
speaker normalization technique, without the SAT complement.
We believe that the VTLN factors are determined using a stan-
dalone classifier, without the iterative re-assignment optimizing
the real likelihood of the hybrid ANN-HMM recognition sys-
tem.

The application of VTLN factors during the TRAPS con-
struction is straightforward, since the only change is made in
the filter-bank setup phase. In this phase, the filters are shifted
according to the chosen transform and factor. The rest of the
parametrization process remains unchanged.

4.2. Minimum Error Linear Transform for MLP ANN

It has been shown [7] that VTLN can be represented as a linear
transform of the original unnormalized coefficients. Therefore,
the linear transform itself can be used for speaker normalization,
even without explicit link to VTLN. The main difference is that
instead of shifting the frequency banks (and thus changing the
parametrization process), the linear transform works on feature
level. Moreover, since the number of free variables is bigger,
the normalization ability might be better.

Let’s express the matrixWWW 0 in eq. (2) as

WWW 0 = ΓΓΓWWW ′0 (7)

where WWW ′0 is the original, unnormalized weight matrix of SI
ANN and ΓΓΓ is a a D0 ×D0 normalization matrix that must be
determined during the speaker normalization phase of the SAT
process.

Suppose that for a given set of utterances, for the given
speaker, we want to find the matrix ΓΓΓ that minimizes the cri-
terion eq. (5), therefore need to solve the following equation

K∑
k=1

∂E(k)

∂ΓΓΓ
= 0 (8)

The gradients can be obtained using a similar approach as used
in backpropagation.

Using the equations eq. (7) and eq. (2) – eq. (4) and apply-
ing the matrix derivative chain rule, we arrive to the following
expression (for simplicity, we drop the index k)

∂E

∂ΓΓΓ

T

=

(
∂E

∂zzz

∂zzz

∂aaaL−1

1∏
i=L−1

(
WWWT

i
∂yyyi
∂aaai−1

)
W ′W ′W ′

T
0

)T

xxx (9)

The derivatives ∂yyyi
∂aaai−1

and ∂zzz
∂aL−1aL−1aL−1

are Di ×Di (DL ×DL re-

spectively) matrices. For the matrix ∂yyyi
∂aaai−1

, the element σab at
coordinates (a, b) is given by

σab = yaδab − yayb (10)

in case when gi is a softmax transfer function and

σab = δabya(1 − yb) (11)

in case when gi is a sigmoidal transfer function. Analogously
for the matrix ∂zzz

∂aL−1aL−1aL−1
.

For the error function expressions ∂E
∂zzz

the following expres-
sions hold

∂EXENT

∂zij
= −δij

ti
zj

(12)

∂EMSE

∂zij
= ti − zj (13)

We call the matrix ΓΓΓ determined using the aforementioned
approach the Minimum Error Linear Transform (MELT) ma-
trix. The difficulty with the direct application of this algorithm
lies in the size of the matrix ΓΓΓ, i.e. in the number of its free pa-
rameters. As already mentioned, the TRAPS usually span quite



a long temporal window and the dimension of feature vector
is relatively high (several hundreds). On the other hand, it is
not uncommon that during training the amount of data belong-
ing to one speaker is quite small (tens or hundreds of seconds).
Therefore, the direct use of MELT training algorithm would
lead inevitably to overtraining. This problem might be over-
comed by clustering the speakers and using Cluster-Adaptive
Training (CAT) instead of SAT, but this is not the way we want
to go.

The solution lies in reduction of number of free parameters
by expressing the matrix ΓΓΓ as a function of S-dimensional vec-
tor γγγ = [γ1, . . . , γS ], ΓΓΓ = ΓΓΓ(γγγ), where S � L0 × L0 and
optimizing the ∂E

∂γγγ
instead of ∂E

∂ΓΓΓ
Using the matrix calculus we

get

∂E

∂γi
= Tr

[(
∂E

∂ΓΓΓ

)T
∂ΓΓΓ

∂γi

]
for i = 1, . . . , S (14)

where the computation of the expression ∂ΓΓΓ
∂γi

is straightforward,
since by definition the Γkl(γγγ) is known for every element Γkl
of the matrix ΓΓΓ. Then, instead of solving the eq. (8), we solve
the following equation

∂E

∂γγγ
= 0 (15)

Unfortunately, there is no simple nor general way of design-
ing the relation ΓΓΓ = ΓΓΓ(γγγ). We experimented with the following
approach. Considering that the TRAPS features are constructed
from log-outputs of mel-filter bank, we have decided to estab-
lish a link between the log-outputs interpolation and the final
TRAPS features transformation.

The normalized bin output ci(k) (using the notation from
section discussing the TRAPS construction) is obtained from
the old frequency bin output c′i(k).

ci(k) =

N∑
j=1

γijc
′
j(k) i = 1, . . . , N (16)

Following the modified TRAPS construction process pre-
sented in Section 2, we arrive to the following matrix1

ΓΓΓ =

 γγγ11 . . . γγγ1NΨ

...
. . .

...
γγγNΨ1 . . . γγγNΨNΨ

 (18)

and the matrix element γγγik represents aN×N diagonal matrix

γγγik = γi·NΨ+kIII (19)

where III is anN×N identity matrix and the expression i·NΨ+k
maps the 2D coordinates (i, j) into the vector γγγ.

5. Experiments
5.1. Speech Corpus

For the experiments we used the SpeechDat-East telephone
speech corpus. The corpus contains recordings of approxi-
mately 1000 speakers. For training the ANN, we used only

1The original, ”full” construction process leads to a matrix

Γ′Γ′Γ′ =

(
ΓΓΓ 000
000 ΓΓΓ

)
(17)

where the matrix Γ′Γ′Γ′ is then used as the matrix ΓΓΓ in eq. (7) and the
matrix ΓΓΓ is the matrix above.
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Figure 3: A scheme of an one-pass unsupervised recognition
using SAT ANN
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Figure 4: A scheme of an supervised recognition using SAT
ANN

the phonetically balanced sentences (ID S0-S9, X0-1). Note
that some speakers are not represented by a complete set of the
12 phonetically balanced sentences. Moreover, since there is a
large portion of silence in the recordings, we removed it. The
training set contains recordings from approx. 900 speakers and
the testing set contains recording from 200 speakers.

Our phonetic alphabet contained 37 three-state phonemes.
The recognition was done on a hybrid ANN-HMM phoneme
recognizer system. To eliminate the influence of language
model, we used the zerogram language model.

5.2. Speaker Independent ANN

For the training of the SI ANN we split the training set into a
training set and a validation set. Using the training data, we
trained two networks: first with 1500 neurons in the hidden
layer (resulting in approx. 600k parameters in total) and the
second with 2500 neurons in the hidden layer (1.1M parame-
ters in total). See Fig. 1 for the scheme of SI ANN training.
These ANN’s are denoted as ”base” in the tables Tab. 1, Tab. 2
and Tab. 3.

5.3. Speaker Adaptive Training of ANN

For the SAT ANN training, we used the SI ANN obtained in the
previous phase as the startup initialization. Using this network,
we determined the VTLN α coefficient using grid-search or
MELT matrices using the previously described algorithm. After
normalization of speakers we re-trained the ANN and the result-
ing ANN was used again in the speaker normalization phase.
See Fig. 2 for the scheme of SAT training.

5.4. Recognition Experiments

During recognition, the assumption of availability of reference
phone level transcript may or may not be true. We call the case
when the reference transcript is available as ”supervised nor-
malization”, the other case is called ”unsupervised normaliza-
tion”. We evaluated both these situations.

5.4.1. Supervised Normalization

For the first set of experiments we used the reference transcript
of the testing data. This assumption is not as strong as it may
seem. During the adaptation phase, the speaker can be asked
to read some prepared, preferably phonetically balanced text
sentences or just some random text downloaded from the in-
ternet. In both these cases, the phone-aligned transcript can be
created relatively easily. The scheme of this recognition pro-



Iteration number
base 1. 2. 3. 4.

ANN-1500 76.64 79.98 81.30 81.79 82.01
ANN-2500 79.25 81.42 81.95 82.01 82.07

Table 1: SAT-VTLN performance (ACC), when the reference
transcript is known

Iteration number
base 1. 2. 3. 4.

ANN-1500 76.64 81.75 82.57 82.89 83.01
ANN-2500 79.25 83.03 83.45 83.60 83.60

Table 2: SAT-MELT performance (ACC), when transcript is
known

cess is depicted in Fig. 4. The results from this experiments are
shown in tables Tab. 1 and Tab. 2. We tested the performance
of SAT ANN-HMM system after each SAT iteration to see how
the training process converges.

5.4.2. Unsupervised Normalization

Next, we performed preliminary experiments to verify if some
improvements can be achieved even without availability of the
reference transcription. Using the SI ANN, we recognized the
testing data. The recognized output was then used as a reference
phone alignment and the computation of normalization factors
was performed on the recognition result instead of on the ref-
erence phonetic transcript. See Fig. 3 for the scheme of this
experiment.

6. Conclusion
In this paper we presented speaker normalization and speaker
adaptive training enhancement of the TRAPS-MLP system. In-
corporation of these techniques can greatly improve the recog-
nition accuracy. According to our experiments, the improve-
ment can achieve 25 % of reduction relative error rate when the
reference phonetic transcript is available and by 12 % when a
very crude unsupervised method is used. We believe that us-
ing more elaborate unsupervised approach would increase the
recognition even further. However, evaluation and development
of such techniques remains a task for further research.

Regarding to the questions asked in the introduction we can
conclude the following: From the performance scores of both
ANN’s on SAT-VTLN task follows that the MLP ANN is able,
to some extent, to cope with the variability of speakers and this
ability is backed up by the size of the network. However, the

Method
base VTLN MELT

ANN-1500 76.64 80.16 80.20
ANN-2500 79.25 81.20 81.51

Table 3: SAT-MELT and SAT-VTLN performance (ACC) when
the reference transcript is unknown

upper bound of its normalization ability is close to SAT-VTLN
performance (since after VTLN normalization, the ANN-2500
did not perform better than ANN-1500, i.e. it was not able to
re-use it’s additional free learning capacity to normalize the
speaker even more). Second, a single TRAPS frame does not
contain sufficient information to perform full speaker normal-
ization. This assertion results from the fact that the SAT-trained
ANN’s performed better than the SI ANN’s. From the fact that
the SAT-MELT method systematically outperformed the SAT-
VTLN we can conclude that the VTLN normalization is not
able to remove all the speaker variability. In other words, the
speaker variability is not characterized only by the length of the
vocal tract.

All the experiments presented in this paper were targeted
on phoneme recognition in a hybrid MLP-HMM framework
and other possible applications were not considered. Note that
the phoneme posteriors (or bottleneck features[8] can be further
used as features in the GMM-HMM model. In that framework,
the Speaker Adaptive Training methods are used routinely. We
believe that using the ANN-SAT (bottleneck) features could
complement the standard GMM-SAT approach and could lead
to improvement of the recognition score; however the evalua-
tion of this gain remains to be performed in our future research.
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error rates in phoneme recognition,” Lecture Notes in Com-
puter Science, vol. 2004, no. 3206, 2004.

[4] C. M. Bishop, Neural networks for pattern recognition.
Oxford University Press, ISBN 0-19-853864-2, 2005.

[5] L. Lee and R. Rose, “A frequency warping approach
to speaker normalization,” Speech and Audio Processing,
IEEE Transactions on, vol. 6, no. 1, pp. 49 –60, jan 1998.

[6] A. Acero, Acoustical and environmental robustness in au-
tomatic speech recognition. Springer, 1993.

[7] M. Pitz, S. Molau, R. Schlüter, and H. Ney, “Vocal
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