
Use of Negative Examples in Training the HVS
Semantic Model

Filip Jurč́ıček1, Jan Švec2, Jǐŕı Zahradil2, and Libor Jeĺınek2

1 Center of Applied Cybernetics, University of West Bohemia,
Pilsen, 306 14, Czech Republic

filip@kky.zcu.cz
2 Department of Cybernetics, University of West Bohemia

Pilsen, 306 14, Czech Republic
honzas@kky.zcu.cz jzahrad@kky.zcu.cz jelinekl@kky.zcu.cz

Abstract. This paper describes use of negative examples in training
the HVS semantic model. We present a novel initialization of the lexical
model using negative examples extracted automatically from a seman-
tic corpus as well as description of an algorithm for extraction these
examples. We evaluated the use of negative examples on a closed do-
main human-human train timetable dialogue corpus. We significantly
improved the standard PARSEVAL scores of the baseline system. The
labeled F-measure (LF) was increased from 45.4% to 49.1%.

1 Introduction

A corpus for semantic parsing usually consists of utterances (word sequences)
and its semantic annotation (semantic parse trees). In such corpus, there are
positive and negative examples which can be used for training statistical models.

A positive example is a pair of a word and its semantic annotation. A pos-
itive example says that some word has some (concrete) semantic annotation.
A negative example, similarly to a positive example, is a pair of a word and
its semantic annotation; however, it says about a word that it does not have a
semantic annotation. A negative example gives us much less information than a
positive example because we have to collect several negative examples to replace
one positive example.

In this paper, the statistical semantic parsing is a search of the sequence
of concepts S = c1, c2, . . . , cT that has the maximum aposteriori probability
P (S|W) for the word observation W = w1, w2, . . . , wT . The search can be de-
scribed as

S∗ = argmax
S

P (S|W)

= argmax
S

P (W |S)P (S) (1)

where P (S) is the semantic model and P (W |S) is the lexical model.

II

In Section 2, we describe the HVS model with the baseline initialization of a
lexical model. Section 3 details both positive and negative examples and the way
how to collect negative examples and a new initialization of the lexical model. In
Section 4, we provide experimental results. Finally, Section 5 closes this paper.

2 The HVS model

The hidden vector state (HVS) model is an approximation of a pushdown au-
tomaton. A vector state in the HVS model represents a stack of a pushdown
automaton, which keeps information that spans over several words.

The semantic information matching every word in an utterance is described
by a sequence of concepts from a leaf to a root of a semantic annotation (see Fig.
1). If we place concepts along the way from the leaf to the root to a vector, than
a derivation tree can be transformed to a sequence of these vectors. We imposed
a hard limit on the maximum depth of a stack equal to four. For example, the
word Prague is described by the vector state [STATION, TO, DEPARTURE,
EMPTY].

 DEPARTURE

 TO

 TIME

 STATION

TO
DEPARTURE

EMPTY
EMPTY

DEPARTURE
EMPTY
EMPTY
EMPTY

STATION
TO

DEPARTURE
EMPTY

TIME
DEPARTURE

EMPTY
EMPTY

DEPARTURE
EMPTY
EMPTY
EMPTY

DEPARTURE
EMPTY
EMPTY
EMPTY

DEPARTURE
EMPTY
EMPTY
EMPTY

TIME
DEPARTURE

EMPTY
EMPTY

TIME
DEPARTURE

EMPTY
EMPTY

does any train go to Prague around four pm

Fig. 1. An example of a full semantic parse tree with the corresponding stack sequence.

The transitions between vector states are modeled by stack operations: pop-
ping 0 to 3 concepts from a stack, pushing a new concept onto a stack, and
generating a word. The first two operations belong to the semantic model which
is dgiven by:

P (S) =
T+1∏
t=0

P (nt|ct−1[1, 4])·

· P (ct[1]|ct[2, 4]) (2)

where nt is the vector state shift operation and takes values in range 0, . . . , 4, and
ct at word position t is a vector state of 4 concepts, i.e. ct = [ct[1], ct[2], ct[2], ct[4]],
where ct[1] is a preterminal concept dominating the word wt and ct[4] is a root

III

concept. The probability P (nt|ct−1[1, 4]) represents a model for popping 0 to 3
concepts from a stack. The variable nt defines the number of concepts which will
be popped of a stack. If nt = 0, it relates to growing a stack by one concept.
If nt = 1, it relates to replacing preterminal concept ct[1] by a new concept.
If nt > 1, it relates to popping nt concepts and pushing a new concept. For
example, the transition from the vector state represented by the seventh block
in Figure 1 is made by popping two concepts TO and STATION and pushing a
new concept TIME (n6 = 2). The probability P (ct[1]|ct[2, 4]) represents a model
for pushing a new concept ct[1] onto a stack. The concept ct[1] is given the rest
of a stack ct[2, 4].

The lexical model performs the last operation, generation of a word. The
lexical model defined as

P (W |S) =
T+1∏
t=0

P (wt|ct[1, 4]) (3)

The word wt is given ct[1, 4]. For more details about the HVS model see [1].

2.1 Training data

The HVS model is possible to train using simple semantics. For the sentence
”Does any train go to Prague around four pm?”, the corresponding semantics
is DEPARTURE(TO(STATION), TIME). Dialogue annotators have to define
semantics that represents each utterance, but they need not provide a full parse
tree3. In Fig. 1, you can see a full parse tree of the example above. To train the
HVS model, we eased the Czech human-human train timetable (HHTT) dialogue
corpus version DEC-2005. The corpus was described in [2].

Table 1. A sample dialogue with semantic annotation (a literal translation from Czech
to English).

Speaker Semantics Literal English translation

operator GREETING the information please
user GREETING hello

DEPARTURE(TIME, I have a question how can I go today
TRAIN TYPE, by regional train
TO(STATION)) to <station> staryho plzence </station>

operator OTHER INFO well we do not have many connections here
TIME, now one goes at eight sixteen if you catch it
TIME after that only at eleven ten

user TIME at eleven ten
ACCEPT(TIME, it is not so bad at eleven ten
FROM(STATION)) from <station> hlavniho </station> yeah
CLOSING yeah well OK

3 A full parse tree defines not only a tree structure but also alignment of words to
leafs of the tree.

IV

2.2 Baseline model

We divided training of the HVS model into three parts: 1) initialization of the
semantic and lexical models, 2) estimation of the semantic and lexical models,
3) smoothing of the semantic and lexical models.

We initialized probabilities P (wt|ct[1, 4]), P (nt|ct−1[1, 4]), and P (ct[1]|ct[2, 4])
uniformly. In the case of the lexical model, we wanted probability of a word
w given a vector state c[1, 4] to be the same for all words (P (w|c[1, 4]) =
1/ |V | ∀w ∈ V , where V was a word lexicon).

To estimate the semantic and lexical models, we used the expectation-maximization
(EM) algorithm because HHTT corpus did not provide fully annotated tree-
bank data. We implemented the linear interpolation smoothing [3] into our
model. We smoothed all three probabilities P (nt|ct−1[1, 4]), P (ct[1]|ct[2, 4]), and
P (wt|ct[1, 4]).

3 Initialization of the lexical model

In comparison with section 2.2, we propose a different initialization based on
using negative examples which are collected automatically from a corpus. First,
we describe positive examples. Second, we detail negative examples and their
automatic extraction from a corpus. Futher, we describe suitable utterances for
negative examples extraction. Finally, we present the novel initialization of the
lexical model.

3.1 Positive examples

A positive example is a pair of a word and a vector state. A positive example says
a word w is possible to generate by a vector state c[1, 4]. For the utterance from
the Fig. 1 ”Does any train go to Prague around four pm?” with the semantic
annotation DEPARTURE(TO(STATION), TIME), a positive example could be
a pair (Prague, [STATION, TO, DEPARTURE, EMPTY]). Because we do not
have full semantic parse trees with vector states aligned to words, the utterance
with its semantic annotation contains others positive examples with the word
Prague, for instance (Prague,[TIME, DEPARTURE, EMPTY, EMPTY]).

To determine a probability of the word Prague given c[1, 4], the EM al-
gorithm must estimate probability over all possible alignments of words in an
utterance with a semantic annotation. However, we could make it easier for the
EM algorithm if we knew, for example, that the vector state [TIME, DEPAR-
TURE, EMPTY, EMPTY] cannot generate word like Prague. As a result, the
EM algorithm would have less possible alignments.

3.2 Negative examples

A negative example, similarly to a positive example, is a pair of a word and
a vector state. However, a negative example says a word w is not possible to

V

generate by a vector state c[1, 4]. In other words, negative examples are pairs of
words and vector states c[1, 4] that do not appear in the same utterances. For
instance, the utterance ”Does any train go at five pm?” with semantic annotation
DEPARTURE(TIME) implies that the word go is not generated by a vector state
different to [STATION, TO, DEPARTURE, EMPTY]. As a result, the pair (go,
[STATION, TO, DEPARTURE, EMPTY]) could be a negative example.

We analyzed 38 concepts in the corpus, and we found four concepts suitable
for negative examples extraction : STATION, TRAIN TYPE, NUMBER, and
TIME. In other words, we search for pairs of any word and a concept form
STATION, TRAIN TYPE, NUMBER, and TIME.

3.3 Selection of utterances for negative examples extraction

Not all utterances are ideal for extraction of negative examples, for instance
the utterance ”Weather is pleasant in Prague today.” with semantic annotation
OTHER INFO. If we used the utterance for extracting negative examples, we
would have to conclude that the word Prague cannot be generated by the vector
state [STATION, . . .] because the concept OTHER INFO does not dominate the
concept STATION.

To avoid selecting improper utterances for negative examples extraction, we
use only utterances containing concepts: ACCEPT, ARRIVAL, DELAY, DE-
PARTURE, DISTANCE, DURATION, PLATFORM, PRICE, and REJECT be-
cause these concepts can dominate concepts STATION, TRAIN TYPE, NUM-
BER, and TIME. For example, from the utterance ”What is price of a ticket
from Prague at six pm” with semantics PRICE(FROM(STATION), TIME),
we can induce that in the utterance there are not words representing concept
TRAIN TYPE. The algorithm in Fig. 2, finally, describes the process of collect-
ing negative examples from a corpus. For more details about mentioned concepts
see [2].

3.4 Application of negative examples

Because negative examples say that a word cannot be generated by a concept,
we modify the initialization of the lexical model to utilize negative examples.
We still initialize the lexical model uniformly; however, at the same time, we
disable generation of some words according to collected negative examples. See
following equations:

x(w, c[1, 4]) =

{
ε if (w, c[1, 4]) is a negative example,
1/ |V | otherwise

P (w|c[1, 4]) =
x(w, c[1, 4])∑

w∈V x(w, c[1, 4])
∀c[1, 4] ∀w ∈ V (4)

where ε is enough small value, V is a word lexicon.

VI

concepts = [ACCEPT, ARRIVAL, DELAY, DEPARTURE, DISTANCE,

DURATION, PLATFORM, PRICE, REJECT]

dominatedConcepts = [STATION, TRAIN_TYPE, NUMBER, TIME]

for every utterance in trainingSet:

if utterance.semantics contains a concept from concepts:

use the utterance as a source of negative examples

for every concept in utterance.semantics:

if concept in dominatedConcepts:

use words as negative examples

negativeExamples[concept].append(utterance.words)

Fig. 2. Algorithm to extract negative examples.

We found that it is better to use non-zero value for ε because negative ex-
amples are not errorless. For example, we need only one wrongly annotated
utterance to generate fatal negative example (Prague, [STATION, . . .]). Con-
sequently, we want to preserve the ability of the lexical model to generate all
words because the EM algorithm can overcome a wrong negative example.

4 Experiments

We tested our model on semantic annotations from HHTT corpus version DEC-
2005. Currently, the corpus consists of 862 dialogues completely annotated with
semantic annotation. Both operators and users are annotated. The corpus has
13769 utterances in total. The vocabulary size is 2667 words. There are 38 se-
mantic concepts in the corpus. In our experiments, the dialogues were randomly
divided into training data (619 dialogues - 9928 utterances, 72%), development
data (69 dialogues - 1108 utterances, 8%), test data (174 dialogues - 2733 utter-
ances, 20%).

We evaluated our experiments using the standard PARSEVAL measures [4];
labeled precision (LP), recall (LR), and labeled F-measure (LF), which are com-
puted as follows:

LP =
of correct concepts in P

of concepts in P
· 100%

LR =
of correct concepts in P

of concepts in T
· 100%

LF =
2 · LP · LR

LP + LR
· 100%

where P is the candidate parse tree (our estimated the most propable parse), T is
the corresponding correct parse tree from the corpus. A concept in P is correct if

VII

there exists a concept in T of the same label that spans the same words. We used
the evalb program from Satoshi Sekine and Michael John Collins4 to compute
these scores. We tested whether the observed differences in PARSEVAL measures
are significant at p = 0.01 using a stratified shuffling test with one million trials
from Dan Bikel5.

4.1 Validation

To determine the effect of negative examples on the initialization of the lex-
ical model, we evaluated different initializations of the lexical model on our
development data. We evaluated the effect separately for each concept NUM-
BER, TIME, STATION, and TRAIN TYPE. Table 2 compares the results of
the baseline system with uniformly initialized lexical model.

Table 2. PARSEVAL scores on the development data.

LP LR LF p-value

baseline 43.7 51.3 47.2
NUMBER 43.6 51.2 47.1 > 0.01

TIME 43.6 45.7 44.6 < 0.01
STATION 46.9 53.8 50.1 < 0.01

TRAIN TYPE 44.8 51.2 47.6 > 0.01
NST 48.7 54.4 51.4 < 0.001

The use of negative examples for the initialization of the lexical model for the
concept NUMBER seems to lower the PARSEVAL scores; however, the difference
was not statistically significant.

The use of negative examples for the initialization of the lexical model for
the concept TIME significantly lower the PARSEVAL scores. As a result, the
concept TIME was excluded from futher experiments.

The use of negative examples for the initialization of the lexical model for
the concept STATION significantly improves the PARSEVAL scores.

The use of negative examples for the initialization of the lexical model for
the concept TRAIN TYPE seems to improve the PARSEVAL scores; however,
the difference was not statistically significant.

Finally, we tested the initialization of the lexical model using the concepts
NUMBER, STATION, and TRAIN TYPE together (NST) (see Table 2, the row
NST). These results are statistically significant on the development data.

4.2 Test data results

Table 3 shows the results of the baseline initialization of the lexical model using
uniform initialization and the initialization of the lexical model using negative
4 http://nlp.cs.nyu.edu/evalb
5 http://www.cis.upenn.edu/∼dbikel/software.html

VIII

examples for the concepts NUMBER, STATION, and TRAIN TYPE (NST). We
report results for both test and development data. The use of negative examples
for the initialization of the lexical model for the concepts NUMBER, TRAIN,
and TRAIN TYPE significantly improve PARSEVAL scores.

Table 3. PARSEVAL scores on the test and the development data.

Test data Development data

LP LR LF p-value LP LR LF p-value

baseline 42.2 49.2 45.4 43.7 51.3 47.2
NST 46.6 51.9 49.1 < 0.001 48.7 54.4 51.4 < 0.001

5 Conclusion

This paper has presented the use of negative examples in training the HVS
model. We identified suitable utterances for extraction of negative examples. We
found three concepts NUMBER, STATION, and TRAIN TYPE for which the
initialization using negative examples of the lexical model significantly improves
the PARSEVAL scores. The labeled F-measure (LF) was increased from 45.4%
to 49.1%.

In the future work, we want futher exploit different ways of initialization of
the lexical model.

Acknowledgment

This work was supported by the Ministry of Education of the Czech Republic
under project 1M0567.

References

1. He, Y., Young, S.: Semantic processing using the hidden vector state model. Com-
puter Speech and Language 19:1 (2005) 85–106

2. Jurcicek, F., Zahradil, J., Jelinek, L.: A human-human train timetable dialogue
corpus. In: Proceedings of 9th European Conference on Speech Communication
and Technology, Lisboa, Portugal (2005)

3. Jelinek, F.: Statistical methods for speech recognition. MIT Press, Cambridge, MA,
USA (1997)

4. Black, E., Abney, S., Flickinger, D., Gdaniec, C., Grishman, R., Harrison, P., Hindle,
D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S.,
Strzalkowski, S.T.: A procedure for quantitatively comparing the syntactic coverage
of english grammars. In: Proceedings of the 1990 DARPA Speech and Natural
Language Workshop, Pacific Grove, CA (1991) 306–311

