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Abstract: Automatic speech recognition (ASR) systems usually consist of an acoustic model and a 
language model. This paper describes a technique of an efficient deployment of the acoustic model 
parameters. The acoustic model typically utilizes Continuous Density Hidden Markov Models 
(CDHMM). The output probability of a particular CDHMM state is represented by a Gaussian 
mixture density with a diagonal covariance structure. Usually, the output probability density function 
of each CDHMM state contains the same number of mixture components although a different number 
of components in individual states may yield more accurate recognition results, especially for low-
resource ASR systems. The central idea is to assign more components to states where it is effective and 
less components to states where the increasing number of components is not warranting a significantly 
better description of the training data. The number of mixture components for a particular CDHMM 
state is chosen by optimizing the Bayesian Information Criterion (BIC).  
 

I. INTRODUCTION 
 
Automatic speech recognition (ASR) systems usually consist of an acoustic model and a language 
model. The acoustic model typically utilizes Continuous Density Hidden Markov Models (CDHMM).  
CDHMM state output probability is commonly represented by a Gaussian mixture density with a 
diagonal covariance structure. In this paper, we concentrate on the problem of determining an 
appropriate number of mixture components. Usually, the output probability density function of each 
CDHMM state contains the same number of mixture components although a different number of 
components in individual states may yield more accurate recognition results. 

The model selection problem is to choose one model from a set of candidate models to describe a 
given training data. The candidate models are models with a different number of parameters. It is 
evident that when the number of parameters is increased, the likelihood of the training data is also 
increased. But when the number of parameters is too large, the problem of overtraining may appear. It 
means that the training data are fitted too closely and the model does not generalize well. The 
performance of the model is then excellent on the training set but not on other data. On the other hand, 
when the number of parameters is too small, the model will not adequately represent the data. A 
natural way to find the balance between these two extremes is the use of the Bayesian Information 
Criterion (BIC).  
 

II.  MODEL ORDER ESTIMATE 
 

The maximum-likelihood (ML) method is an efficient method for estimating parameter vectors when 
the dimension of the parameter space is fixed. But how to choose an appropriate dimension of the 
parameter space? The right choice is very important since models with too few parameters will not 
adequately represent the training data, whereas models with too many parameters might cause the 
problem of overtraining. The aim is to find a balance between these two extremes. A couple of criteria 
for model size selection have been introduced in the statistics literature, ranging from non-parametric 
methods such as cross-validation to parametric methods as the Akaike Information Criterion [1] or the 
Bayesian Information Criterion. 

In the model selection problem, we have to choose one model m among a set of candidate models 
(hypotheses). The probability of a specific model given by the observed data X can be by using the 
Bayes’ relation written as 
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where p(m) is the prior probability reflecting our prior belief in the specific model. The model is 
typically defined by a set of parameters denoted by θ, so that we set up a generative model density 
p(X|m,θ). Thus, we obtain the following relation 
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where p(θ|m) carries a possible prior belief on the level of parameters. The integral in (2) is often too 
complicated to be evaluated analytically. A number of various approximations have been proposed, 
here we use the BIC approximation which has been introduced for the first time by G. Schwarz in 
1978 [2]. This method approximates the integral by a Gaussian in the vicinity of parameters θ* that 
maximizes the integrant. With this approximation, we get 
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where d is the dimension of a parametric model and N is the number of training cases. A detailed 
inference of BIC can be found in [3]. The BIC criterion has often been used for model identification in 
statistical modeling, time series, linear regression, automatic audio segmentation etc. [4, 5]. 
 

III. ACOUSTIC MODEL REFINEMENT  
 
In CDHMM based speech recognition, it is assumed that the sequence of observed speech vectors is 
generated by a finite state machine which changes its state every time unit. Each time that a state is 
entered a speech vector is generated from the state’s output probability density. To each speech unit 
(e.g. monophone or triphone) is assigned just one CDHMM, typically with 3 emitting states. CDHMM 
state output probability is represented by a Gaussian mixture density with a diagonal covariance 
structure. The output distribution is then defined as 
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where M is the number of mixture components, o is the observed vector, cm is the weight of m-th 
component, and N(o| �m, Qm) is the multidimensional Gaussian density with the mean vector �m and the 
diagonal covariance matrix Qm. For cm it holds 
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The mixture model is here a parsimonious representation of a non-standard output density. An 
illustration of a Gaussian mixture density and its components is shown in Fig. 1. A zero cepstral 
coefficient distribution of a particular state serves as an example there. 

Now we will assume an application of the BIC to the output density of CDHMM states. We  
concentrate on the problem of determining an appropriate number of mixture components. Usually, the 
output probability density function of each CDHMM state contains the same number of mixture 
components although a different number of components in individual states may yield more accurate 
recognition results. The central idea is to assign more components to states where it is effective and 
less components to states where the increasing number of components is not warranting a significantly 
better description of the training data. Thus, BIC should tend to choose more components for the states 
representing more complex sounds and vice versa less components for the states representing less 
complex sounds. The parameters of the whole acoustic model are then efficiently deployed. 
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Fig. 1: An example of a Gaussian mixture density and its components  

Let m be an acoustic model containing ng Gaussians with diagonal covariance matrixes and K the  
dimensionality of the training data. Then, the total number of parameters needed to describe the model 
is 
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Let X be the training data set comprising N samples, and let p(X|m) be the training data likelihood. 
With this notation, the BIC approximation in (3) can be rewritten as 
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where parameter � >0 is arbitrary chosen by a system designer. Rigidly taken, � = 1 is set in (3), but 
the possibility of varying � allows us to affect the overall model size. This fact is very important in 
many cases and will be mentioned later. The greater value of � is chosen, the smaller model we get. 

  The aim is to choose a model m that maximizes BIC(X,m). Note that the size of the model is 
exponentially penalized, so the large models can be selected only if they considerably better describe 
the training data. We can discuss two distinct cases of the BIC application. The maximal number of 
parameters that the ASR system can support is either limited or not. The first case arises when we are 
designing a low-resource system (e.g. ASR for mobile phones, PDA etc.) [6]. In the resource-
constrained system, model size has significant economic and energetic consequences. A large model 
requires more non-volatile storage than a small one, and its associated computations usually require 
more processor cycles and runtime memory. The limited maximal number of parameters is here 
suboptimal, so we choose such value of � at which the total number of parameters is equal to the 
maximal allowed number. In the latter case we can test different values of � and determine that one 
that maximizes recognition accuracy [7]. 

We applied the BIC criterion on triphone models with shared states. However, the resembling 
strategy could be applied on any models that we use (e.g. monophones, biphones etc.) We searched for 
the BIC-optimal triphone models with shared states using a following strategy. We trained sets of 
triphone models with a fixed number of mixture components assigned to each state and stored them. 
Subsequently, we computed training data likelihood p(m|X) for each state of each set by the forced 
alignment. Then we were able to easily determine BIC maximizing ng for each state of the  triphone 
set. Triphone models with a varying number of components were consequently retrained allowing a 
variable alignment.  

This procedure is illustrated for a particular state in Fig. 2. The second emitting state of the model of 
L_B-d+a triphone serves as an example there. A maximal number of components is set to 32. The 
horizontal axes represent number of components. The vertical axes represent the training data log-
likelihood (in the top part) and the BIC value (in the bottom part). As the number of mixture 
components increases, the log-likelihood improves too, whereas the BIC value first increases and then 
decreases. In this example, the optimal value of the BIC criterion was reached at ng = 18. 



 

1 5 10 15 20 25 30
55

60

65

70

n
g

lo
g 

p(
X

|m
)

1 5 10 15 20 25 30

58

60

62

64

n
g

B
IC

(X
,m

)

 
 

Fig. 2: An example of choosing a BIC optimal number of mixture components 
 

IV. EXPERIMENTAL RESULTS  
 

The method was tested on a subset of the Czech Read-Speech Corpus (UWB_S01) recorded at 
University of West Bohemia [8]. The used subset of the corpus consists of 40 phonetically balanced 
sentences that were read by 105 different speakers (66 males and 39 females). Thus, the used dataset 
altogether contains 4200 records. All waveforms were parametrized by the PLP method with 13 
cepstral coefficients with additional delta and delta-delta coefficients. The whole dataset was divided 
into a training set (100 speakers) and a testing set (5 speakers not appearing in the training set). The 
vocabulary comprising 679 items was used both for the training and the testing. So we revolve a 
speaker independent system with a medium vocabulary. To evaluate only the impact of the acoustic 
model, no language model was used during the testing. The HTK speech recognizer [9] was used in all 
experiments. Recognition accuracy was used as an evaluation metric. It is defined as 
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where N is the total number of labels in a transcript file, D is the number of deletions, S is the number 
of substitutions, and I is the number of insertions. 

We made several experiments to evaluate the impact of the acoustic model refinement on the 
performance of an ASR system. The value of � was on each occasion chosen so that the BIC-refined 
system had the same total number of Gaussians as a corresponding baseline system. The systems 
having assigned a constant number of mixture components to each state were chosen as those baseline 
systems. We tested systems with 5, 6, 8, 10, and 13 mixture components. Results are shown in Table 1 
where Avg ng denotes the average number of components per state, BIC Acc the accuracy after 
applying BIC, BL Acc the baseline accuracy, and Imp the absolute accuracy improvement. As it is 
possible to see, a slight recognition accuracy improvement was achieved. A more significant 
improvement was reached when the number of components per state was 5 and 6. This case 
corresponds to a low-resource system with a limited number of parameters. 

  
TABLE 1. A comparison of the recognition accuracy of a baseline and the BIC-refined system �

 Avg ng BIC Acc [%] BL Acc [%] Imp [%] 
0.0027 5 79.07 77.52 1.55 
0.0022 6 79.40 77.93 1.47 
0.0016 8 79.29 78.97 0.32 
0.0012 10 79.69 79.26 0.43 
0.0008 13 79.58 79.33 0.25 



 
V. CONCLUSION  

 
In this paper we have described the application of the Bayesian Information Criterion in an ASR 
acoustic model refinement. By optimizing BIC, the overall acoustic model parameters are efficiently 
deployed between individual states. This yields a slight recognition accuracy improvement. By varying 
the penalizing parameter � we are able to influence overall model size, so we can generate a superior 
model at a given fixed size. This is convenient in building a low-resource system since the model size 
has relevant economic consequences. A more significant recognition accuracy improvement was 
achieved for the case of a low-resource system. 
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