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Abstract: Automatic speech recognition (ASR) systems usually cafissst acoustic model and a
language model. This paper describes a technique of an efficient deploymédeat aédustic model
parameters. The acoustic model typically utilizes Continuous Densitdddi Markov Models
(CDHMM). The output probability of a particular CDHMM state is repraged by a Gaussian
mixture density with a diagonal covariance structure. Usually, the output prababtgnsity function
of each CDHMM state contains the same number of mixture components althdliffgrent number
of components in individual states may yield more accurate recognitiontsegspecially for low-
resource ASR systems. The central idea is to assign more componstiatesovhere it is effective and
less components to states where the increasing number of componenta@mawiting a significantly
better description of the training data. The number of mixture components farticular COHMM
state is chosen by optimizing the Bayesian Information Criterion (BIC).

[. INTRODUCTION

Automatic speech recognition (ASR) systems usually consist dicamustic model and a language
model. The acoustic model typically utilizes Continuous Density Hiddarkov Models (CDHMM).
CDHMM state output probability is commonly represented by a Ganssiture density with a
diagonal covariance structure. In this paper, we concentrate on theeproifi determining an
appropriate number of mixture components. Usually, the output probability gduosittion of each
CDHMM state contains the same number of mixture components althouiffeaent number of
components in individual states may yield more accurate recognition results.

The model selection problem is to choose one model from a set of camdictalels to describe a
given training data. The candidate models are models with a diffemumber of parameters. It is
evident that when the number of parameters is increased, théh&ikel of the training data is also
increased. But when the number of parameters is too large, the problavertraining may appear. It
means that the training data are fitted too closely and the mdde$ not generalize well. The
performance of the model is then excellent on the training set but not on other data. On theaathe
when the number of parameters is too small, the model will not adelyuagpresent the data. A
natural way to find the balance between these two extremes igsth@f the Bayesian Information
Criterion (BIC).

. MODEL ORDER ESTIMATE

The maximum-likelihood (ML) method is an efficient method for estiing parameter vectors when
the dimension of the parameter space is fixed. But how to choose an appeagimension of the
parameter space? The right choice is very important since medii too few parameters will not
adequately represent the training data, whereas models with too paaagneters might cause the
problem of overtraining. The aim is to find a balance between thesextwenees. A couple of criteria
for model size selection have been introduced in the statisteraiure, ranging from non-parametric
methods such as cross-validation to parametric methods as tlileeAkBormation Criterion [1] or the
Bayesian Information Criterion.

In the model selection problem, we have to choose one mudahong a set of candidate models
(hypotheses). The probability of a specific model given by the obdedegaX can be by using the
Bayes’ relation written as

x) = PX[m) p(m)

p(m| o(X)

1)



where p(m) is the prior probability reflecting our prior belief in the spicimodel. The model is
typically defined by a set of parameters denotedégo that we set up a generative model density
p(X|m,d. Thus, we obtain the following relation

p(X [m) = [ p(X,8|m)dé = [ p(X|6,m)p(@|m)de @)

wherep(dm) carries a possible prior belief on the level of parametehg ifitegral in (2) is often too
complicated to be evaluated analytically. A number of various appratams have been proposed,
here we use the BIC approximation which has been introduced for theifirs by G. Schwarz in
1978 [2]. This method approximates the integral by a Gaussian in tivtyiof parametersd that
maximizes the integrant. With this approximation, we get

log p(X,m) = log p(xw*,m)—%logN @)

whered is the dimension of a parametric model aNds the number of training cases. A detailed
inference of BIC can be found in [3]. The BIC criterion has often been used for model idatitifi in
statistical modeling, time series, linear regression, automatic auginesgation etc. [4, 5].

L ACOUSTIC MODEL REFINEMENT

In CDHMM based speech recognition, it is assumed that the sequemdiseifved speech vectors is
generated by a finite state machine which changes its statgy éme unit. Each time that a state is
entered a speech vector is generated from the state’s output gdityb@émnsity. To each speech unit
(e.g. monophone or triphone) is assigned just one CDHMM, typically with 3 emittingsstaEHMM
state output probability is represented by a Gaussian mixture gengh a diagonal covariance
structure. The output distribution is then defined as

b(0) =Z_]cmN(o|um,Qm) (4)

whereM is the number of mixture components,is the observed vector,, is the weight ofm-th
component, andl(o| um Qm) is the multidimensional Gaussian density with the mean vegtand the
diagonal covariance matri@... Forc,, it holds

M

Y ¢, =1 (5)

m=1

The mixture model is here a parsimonious representation of a non-sfapndgut density. An
illustration of a Gaussian mixture density and its components is showig. 1. A zero cepstral
coefficient distribution of a particular state serves as an example there.

Now we will assume an application of the BIC to the output densityC&BIHMM states. We
concentrate on the problem of determining an appropriate number of mixtomeanents. Usually, the
output probability density function of each CDHMM state contains thmesaumber of mixture
components although a different number of components in individual stagyield more accurate
recognition results. The central idea is to assign more comporestates where it is effective and
less components to states where the increasing number of components is notimgaarargnificantly
better description of the training data. Thus, BIC should tend to choose more congpfurehe states
representing more complex sounds and vice versa less components Eiaté#e representing less
complex sounds. The parameters of the whole acoustic model are then efficientlyetepl
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Fig. 1: An example of a Gaussian mixture density and its components

Let m be an acoustic model containimg Gaussians with diagonal covariance matrixes Knthe
dimensionality of the training data. Then, the total number of parametersaheedescribe the model
is

d=(@2K+1),. (6)

Let X be the training data set comprisibhgsamples, and lgb(X|m) be the training data likelihood.
With this notation, the BIC approximation in (3) can be rewritten as

BIC(X,m)=logp(X |m)-A

dlogN
7
> (7)

where parametet >0 is arbitrary chosen by a system designer. Rigidly taken,1 is set in (3), but
the possibility of varyingl allows us to affect the overall model size. This fact isyvenportant in
many cases and will be mentioned later. The greater valaésofhosen, the smaller model we get.

The aim is to choose a modet that maximizesBIC(X,nm). Note that the size of the model is
exponentially penalized, so the large models can be selected dhlgyifconsiderably better describe
the training data. We can discuss two distinct cases of theapl@lication. The maximal number of
parameters that the ASR system can support is either liroitedt. The first case arises when we are
designing a low-resource system (e.g. ASR for mobile phones, PBA H]. In the resource-
constrained system, model size has significant economic and eimezgesequences. A large model
requires more non-volatile storage than a small one, and its assda@omputations usually require
more processor cycles and runtime memory. The limited maximal numbgarameters is here
suboptimal, so we choose such valueiddit which the total number of parameters is equal to the
maximal allowed number. In the latter case we can test diffevalues ofl and determine that one
that maximizes recognition accuracy [7].

We applied the BIC criterion on triphone models with shared statesveder, the resembling
strategy could be applied on any models that we use (e.g. monophones, biphones etc.tiée $ear
the BIC-optimal triphone models with shared states using a followsingtegy. We trained sets of
triphone models with a fixed number of mixture components assigned tostatehand stored them.
Subsequently, we computed training data likelihggoh|X) for each state of each set by the forced
alignment. Then we were able to easily determine BIC maximginj, for each state of the triphone
set. Triphone models with a varying number of components were consequetndined allowing a
variable alignment.

This procedure is illustrated for a particular state in Fig. 2. The secoittregrstate of the model of
L_B-d+atriphone serves as an example there. A maximal number of comporsesés io 32. The
horizontal axes represent number of components. The vertical axeseepthe training data log-
likelihood (in the top part) and the BIC value (in the bottom part). the number of mixture
components increases, the log-likelihood improves too, whereas theaBI€ first increases and then
decreases. In this example, the optimal value of the BIC criterion was reachgd B8.
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Fig. 2: An example of choosing a BIC optimal number of mixture components
V. EXPERIMENTAL RESULTS

The method was tested on a subset of the Czech Read-Speech Cdiyigs $01) recorded at
University of West Bohemia [8]. The used subset of the corpus cansistO phonetically balanced
sentences that were read by 105 different speakers (66 males deach@@s). Thus, the used dataset
altogether contains 4200 records. All waveforms were parametbyethe PLP method with 13
cepstral coefficients with additional delta and delta-delta dciefits. The whole dataset was divided
into a training set (100 speakers) and a testing set (5 speaseeppearing in the training set). The
vocabulary comprising 679 items was used both for the training andeteng. So we revolve a
speaker independent system with a medium vocabulary. To evaluatéhenigmpact of the acoustic
model, no language model was used during the testing. The HTK speech recognizer [9¢d/asalb
experiments. Recognition accuracy was used as an evaluation metric. Inisctia$

Acc= %_S_' 100% (8)

whereN is the total number of labels in a transcript fil2,is the number of deletion§is the number
of substitutions, andlis the number of insertions.

We made several experiments to evaluate the impact of the taconsdel refinement on the
performance of an ASR system. The valuelafias on each occasion chosen so that the BIC-refined
system had the same total number of Gaussians as a correspondatigebagstem. The systems
having assigned a constant number of mixture components to each statelvosen as those baseline
systems. We tested systems with 5, 6, 8, 10, and 13 mixture components. ResuitsnarénsTable 1
where Avg n, denotes the average number of components per dB& Acc the accuracy after
applying BIC,BL Accthe baseline accuracy, andp the absolute accuracy improvement. As it is
possible to see, a slight recognition accuracy improvement whgwsd. A more significant
improvement was reached when the number of components per state wad 6. This case
corresponds to a low-resource system with a limited number of parameters.

TABLE 1. A comparison of the recognition accuracy of a baseline and the BIC-refirsteisy

A Avg n, | BIC Acc[%] | BL Acc[%] | Imp[%]
0.0027 5 79.07 77.52 1.55
0.0022 6 79.40 77.93 1.47
0.0016 8 79.29 78.97 0.32
0.0012 10 79.69 79.26 0.43
0.0008 13 79.58 79.33 0.25




V. CONCLUSION

In this paper we have described the application of the Bayesianntataon Criterion in an ASR
acoustic model refinement. By optimizing BIC, the overall acoustiel parameters are efficiently
deployed between individual states. This yields a slight recogrgibonracy improvement. By varying
the penalizing parametérwe are able to influence overall model size, so we can gemeratiperior
model at a given fixed size. This is convenient in building a logsrgce system since the model size
has relevant economic consequences. A more significant recognitmuraay improvement was
achieved for the case of a low-resource system.

V1. ACKNOWLEDGEMENT

Support for this work was provided by the Ministry of Education of ttee€h Republic, project No.
MSM234200004.

REFERENCES

[1] H. Akaike: “A new look at the statistical ideification model”, IEEE Trans. Automatic Control, V.ol9,
pp. 719 - 723, 1974

[2] G. Schwarz: “Estimating the Dimension of a Mdfé\nnals of Statistics, Vol. 6, pp.461 — 464, 197

[3] A. Lanterman: “Schwarz, Wallace, and Rissanéntertwining Themes in Theories of Model Order
Estimation”, International Statistical Review, V@9, No. 2, August 2001, pp. 185 — 212

[4] S. Chen, R. Gopinath: “Model Selection in Acdigs Modeling”, Proc. EUROSPEECH99, Budapest,
Hungary,1999

[5] L.K. Hansen, J. Larsen, T. Kolenda: “Blind Det®n of Independent Dynamic Components®
Proc. of ICASSP'2001, Salt Lake City, USA, SAM-P@8,Vol. 5, 2001

[6] S. Deligne, E. Eide, R. Gopinath, D. KanevsB, Maison, P. Olsen, H. Printz, J. Sedivy: “Low -eBource
Speech Recognition of 500 — Word Vocabularies”, r&@UROSPEECH 2001 Scandinavia, Aalborg,
Denmark, 2001

[7] S. Chen, E. Eide, M. Gales, R. Gopinath, D. l€aeky, P. Olsen: “Automatic Transcription of Broact
News”, IBM T.J. Watson Research Center, Yorktowridtes, USA, 2001

[8] J. Psutka, V. Radova , L. Miiller, J. MatouSéXk,Ircing, D. Graff: “Large Broadcast News and Rezmkech
Corpora of Spoken Czech”, Proc. EUROSPEECH 200In8icavia, pp. 2067 — 2070, Aalborg, Denmark,
2001

[9] S. Young et al.:. “The HTK Book (for HTK Version3.1)", Cambridge University, available at
http://htk.eng.cam.ac.uk2002




