SENTENCE BOUNDARY DETECTION IN CZECH TTS SYSTEM USING
NEURAL NETWORKS

Jan Romportl, Daniel Tihelka, Jindrich Matousek

Department of Cybernetics, University of West Bohemia in Pilsen
Univerzitni 22
306 14 Plzeni, Czech Republic

ABSTRACT

This paper' proposes results of an application of a neural
network on the problem of deciding whether a certain
punctuation mark in Czech text is or is not the end of a
sentence. It also discusses possibilities of using methods
for relevant parameters extraction and compares a neural
network based method with a Bayes classifier and a
heuristic classifier.

INTRODUCTION

Probably everyone concerned with text processing agrees
that segmenting a text into sentences is certainly not a
trivial task. Mainly for the sake of the text-to-speech
system ARTIC [1] we have started the development of a
sentence boundary disambiguator. Further in this text we
will show why we have decided to use a neural network in
the task of processing signal determined by the lexical
context of ambiguous punctuation marks and we will
present a comparison of a neural network classifier with a
Bayes classifier and a heuristic classifier.

FORMALIZATION

Indeed, when speaking about sentence boundary detection
we actually mean designing an appropriate classifier
where the essential task is to set up its internal parameters.

Be S such a set whose elements are ordered n-tuples
(the value of n is not important so far) of word forms
(technically including also punctuation marks) such that
they can surround a text token which can potentially end a
sentence (“context” of an ambiguous text token). It is
clear that S is a potentially infinite set, thus be S’ U S such
a finite subset which can be created as training data. Be C
a set representing two propositions: “ambiguous token is
the end of a sentence” and “ambiguous token is not the
end of a sentence” (let us say C= {1;0}).

The ideal classifier is then a function F, e.g. a set
whose elements are 2-tuples (c, s), where ¢ UC and s LS.
The partialization of F according to S’ is a set F' which
can be called a real classifier. The process of classification
actually reclines upon creating a model of F’ followed by

1 This research is supported by the Grant Agency of
Czech Republic no. 102/02/0124 and the Ministry of
Education of Czech Republic, project no.
MSM235200004.

its extrapolation on arbitrary subsets of S. In order to
create a model of F' it is useful to have a mapping
function M: S—R", e.g. a set of 2-tuples (, s), where
r OR", numerically representing possible contexts of
ambiguous tokens. The model is then a set F, of 2-tuples
(c, (r, 5)). If we treat vectors c;...c; and 7;...7; (respective to
s;...s;) as signal, we may model F' as a transformation
explicated by the set of equations:

c¢=gW, b, r) fori= 1.

W and b are parameters of the model which are to be
aproximated by a (for instance) gradient method. Since
particular neural networks are trained by methods that are
actually based on refining the parameters in the direction
of a gradient, we can create F,, using a feed forward neural
network with non-linear activation functions and back-
propagation based learning algorithms.

LINGUISTIC DATA

The first thing to be solved is suitable linguistic data
representation, e.g. the mapping function M. In the
following text we will call “punctuation mark” such a text
token, which can potentially end up a sentence (we
considered these punctuation marks: .;?!). For each
puctuation mark the neural network is supplied by a
pattern determined by the lexical context of this mark and
the output is required to generate the value 1 (or as close
to 1 as possible) if this punctuation mark is the end of a
sentence and 0 if it is not.

We have undertaken experiments with several types
of the context of punctuation marks and we realised that
best results gives the “2+2 context”, e.g. two text tokens
left from the punctuation mark and two tokens right, as the
following example shows:

<dané> <celkem> . <Doklady> <,>
(lit.: <tax> <in_total> . <Vouchers> <,>)

The pattern determined by the aforementioned context is a
vector given by the juxtaposition of 2+2 so called
“descriptor arrays” (DA, as in [2]). Each DA belongs to
one token from the context and it is a vector whose values
are estimations of probabilities of the analytical functions
(AFUN) the word (represented by a particular token)
appears in. The AFUNs are chosen and estimated from the

Prague Dependency Treebank 1.0 (PDT), see [3], where
also all training and testing texts were taken from. DA is
then extended by two more values (Abr, Cap) not
presented in PDT, thus we can show this example:

DA for word “to” (Czech “it”):

AFUN value description
Pred 0 predicate
Sb 0.533 |subject
Obj 0.249 |object
Adv 0.031 |adverbial
Other 0.046 | AFUNSs not distinguished
Atr 0.023 | attribute
AuxOther | 0.081 |auxiliary AFUNs not
distinguished
Coord 0 coordination
AuxR reflexive particle “se” which is
neither Obj nor lexically bound to
0 |its verb
AuxP 0.001 |preposition
AuxX 0 comma
AuxG other graphical symbols not
0 |classified as AuxK
AuxK 0 sentence end punctuation
ExD 0.014 |ellipsis (ex-dependency)
Abr 0 abbreviation
Cap 0.112 |written with capitals

The values of DA are assigned from a lexicon. The nature
of this task does not necessarily need any sort of
probability estimation smoothing. There is one more
attribute being added to the input pattern — an indication
of digits in a token preceding the punctuation mark and an
indication of capital letters in a token following. In our
first experiments we also used the attribute “token
counter” indicating the number of tokens between the
punctuation mark and the last recognised sentence end but
we surprisingly realised that this attribute slightly
deteriorates the classifier performance. The correlation
between this attribute and sentence ends is quite high;
however, in this case it often causes the classifier to ignore
sentence ends where the sentences are short (e.g. 1 or 2
tokens).

Following [2] we have also tried to construct DA
using part-of-speech paradigmas instead of analytical
functions. However, due to the free word order in the
Czech language such an approach is not as effective as [2]

reports. We believe higher efficiency can be achieved by
concerning syntagmatical configurations because from
such a point of view each sentence is a more or less
compact entity embodying more regularities. The results
of comparing these two approaches will be shown further.

Figure 1 demonstrates the covariance of those
patterns from the training set, which represent the cases
with sentence ends. It can be easily seen that many
attributes do not give any considerable information for
classification, thus it would be useful to suitably decrease
the pattern dimension.We have carried out some
experiments with performance improvement attained by
suitable attribute extraction based on higher-to-lower
dimensional pattern space projection using Karhunen-
Loeve method:

Each pattern is mapped into a space with lower dimension
so as a specific criterial function representing an error
caused by this projection is minimal. The mapping is
represented in the form (highly approximated, though
often used) of a tranformation matrix given by the
formula:

L M,
1 1 - T
T zzlgl MI mgl (rlm_ r)(rlm _r)

where L is the number of classes to be distinguished (2 in
our case), M, the number of training patterns in the class /,
71m the m-th pattern in the 1-th class and

L M,

ol L
r_LZMIZrlm

1=1 m=1

The attribute extraction works simply in such a way that
each vector r, from the training set is multiplied by the
matrix derived from T and the resulting vector is treated as
a new pattern representing particular s [S.

80 e

Figure 1. Patterns covariance

NEURAL NETWORK

The structure of the neural network model of the classifier
is based on [2]. It is a fully connected feed-foward two-
layer neural network (three-layer respectively; however,
input layer — hidden layer — output layer networks are
often called two-layer) with a input units, b hidden units
and one output unit. The output of the network is a real
number from the interval <0; 1>, all units have
“sigmoidal” activation functions. The numbers a and b
depend on the choice of input attributes. For the input
patterns constructed the way described above it means the
number of the input units is 65 (e.g. a = 65). The ability of
the network to learn the train set without mistakes as well
as the speed of the learning depends on the number of the
hidden units. We experimentally set this number to 33
(e.g. b=133).

HEURISTICS

For the sake of performance measuring we have also
created a Bayes classifier and a simple heuristic classifier
which uses a set of rules to disambiguate a punctuation
mark. The rules are defined as follows (the order of the
actions is important and was made up to minimise the
error on the training set):

1. result := T (true, punctuation mark is the sentence end)

2. if the preceding token is a number, result := F (false)

3. if the following token is with a capital letter and
followed by a space, result :=T

4. if the preceding token is an abbreviation, result := F

5. if the preceding token has only one letter and this letter

is capital, result ;= F

if the preceding token is a sentence end, result ;== T

if the preceding token is “(“, result :== F

if the following token is “)” and is not followed by a

token with a capital letter, result :== F

9. return the actual value of result

el

BAYES CLASSIFIER

The Bayes classifier inserts input patterns to different
classes so as to maximise the probability that a certain
pattern belongs to a respective class according to the
Bayes theorem. We assumed the patterns abide the normal
(Gaussian) probabilistic distribution. This classifier is
supplied by the same input data as the neural network.

TESTING AND RESULTS

All classifiers (neural network, NN; Bayes classifier, BC;
heuristics, H) were set up on the training set of 3,667
ambiguous cases with a cross-validation set of 507
ambiguous cases. The overall tests were run on the
separate set of 6,772 ambiguous test cases. All test cases
were taken from the PDT and come from Czech
newspapers and journals. The threshold for the NN output

was experimentally set to 0.7 (e.g. if the NN output value
is higher than the threshold, the input pattern is recognised
as representing the sentence end).

The test set consists of 984 (14.5%) punctuation
marks which are not ends of sentences (e.g. 984 negatives)
and 5,791 which are (e.g. 5,791 positives). This means
that a trivial classifier assigning each punctuation mark the
sentence end would achieve 14.5% error rate. The
following table shows the error rates of the
aforementioned classifiers when disambiguating the test
set of 6,772 test cases. Errors can be divided into two
categories: false positives (punctuation mark is not the end
of a sentence while the classifier says it is) and false
negatives (vice versa).

Figure 2 shows the evolution of the mean square
error of the training and the validation set during training
epochs.

Table 1 shows the error rates achieved in the
validation set and briefly summarizes the performance of
the neural network in comparison with two other
classifiers.

Table 2 shows the error rates of NN with 3+2
context when relevant attribute extraction (projection
using Karhunen-Loeve method) was applied. The initial
pattern space is of 81 dimensions and this method finds
such approximations of the patterns from this space in
spaces of lower dimensions that the mean square error is
minimal. Again the test set is of 6772 test cases.

CONCLUSION

In comparison with [2] the best results we achieved seem
to be notably worse ([2] alleges about 1% error rate).
However, one must note that we are quite handicapped
partly by the free word order and partly by extensive
flexion of the Czech language (we must also recall the
difficult nature of the testing text). The impacts of the first
reason we try to minimise by using AFUNSs instead of
part-of-speech paradigm since the patterns constructed this
way can better represent a sentence in terms of more or
less syntactically and semantically closed language unit.
The second reason causes problems when creating a
suitable lexicon with probability estimations and this will
be in focus of the further research as well as more
elaborate exploration of DA and input pattern features
(e.g. morphological analyser, pattern attribute pruning,
etc.) which means we expect further improvement of the
NN performance.

BC has shown not to be very efficient, which is
mostly by the reason of normal probabilistic distribution
used. It supports the assumption that no language
phenomena can be appropriately described by this
distribution. On the contrary, H achieved almost the same
results as NN. The simplicity and the performance of H
thus would speak in favour of H. However, we must be
aware of the fact that further improvement of H is very
difficult and far from being significantly -efficient.

Moreover, the expected improvement and evident
universality of NN (it is easily adaptable to be used in
other languages) and, last but not least, the possible using
of this method for phonemic clause detection (for the sake
of TTS system prosody implementation) speak in favour
of NN.

REFERENCE

[1] Matousek, J. - Psutka, J. “ARTIC: A New Czech Text-
to-Speech System Using Statistical Approach to Speech
Segment Database Construction”, In The Proceedings of
the 6th International Conference on Spoken Language
Processing ICSLP2000, vol. IV. Beijing, China, 2000, pp.
612-615.

[2] Palmer, D. - Hearst, M. “Adaptive multilingual
sentence boundary disambiguation”, Computational
Linguistics 23, 1997, pp. 241-267.

[3] Bohmova, A. - Hajic, J. - Hajicova, E. - Hladka, B.
“The Prague Dependency Treebank: Three-Level
Annotation Scenario”, In Treebanks: Building and Using
Syntactically Annotated Corpora, ed. Anne Abeille.
Kluwer Academic Publishers.

Mean square error per training epochs

0.09 T T

0.08 -

0.07 -

0.06 -

training set
——- validation set

20 25 30 35 40

Figure 2. The evolution of the mean square error during training

NN BC H
errors (per cent) 183 (2.7%)| 548 (8.1%) 196 (2.9%)
false positives (per cent) 81 (1.2%) 99 (1.5%) 101 (1.5%)
false negatives (per cent) 102 (1.5%)| 449 (6.6%) 95 (1.4%)

Table 1. The error rates of the classifiers with the 2+2 context

pattern dimension 81

60 37 22

errors (per cent) 203 (3.0%)

190 (2.8%)

237 (3.5%) | 284 (4.2%)

Table 2. The error rates achieved when using the Karhunen-Loeve
transformation on the 3+2 context

