
Discriminative training of gender-dependent acoustic
models
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Abstract. The main goal of this paper is to explore the methods of gender-
dependent acoustic modeling that would take the possibly of imperfect function
of a gender detector into consideration. Such methods will be beneficial in real-
time recognition tasks (eg. real-time subtitling of meetings) when the automatic
gender detection is delayed or incorrect. The goal is to minimize an impact to the
correct function of the recognizer. The paper also describes a technique of unsu-
pervised splitting of training data, which can improve gender-dependent acoustic
models trained on the basis of manual markers (male/female). The idea of this
approach is grounded on the fact that a significant amount of ”masculine” female
and ”feminine” male voices occurring in training corpora and also on frequent
errors in manual markers.

1 Introduction

The gender-dependent acoustic modeling is a very efficient way how to increase the ac-
curacy in LVCSR systems. The training of acoustic models is usually based on manual
markers connected with each utterance stored in a corpus. Such training of male/female
acoustic models usually ignores diametrically different types of voices, e.g. ”masculine”
female and ”feminine” male voices, whose occurrence in the corpus is not negligible.
Also a problem with frequent errors in manual markers (male/female) connected with
individual utterances is not solved. We proposed an unsupervised clustering algorithm
which can reclassify training voices into more acoustically homogeneous classes. The
clustering procedure starts from gender-dependent splitting and finishes in somewhat
refined distribution which yields higher accuracy score. This approach is discussed in
more detail in Section 2.1.

In the following part of the paper we discuss discriminative training (DT) of gender-
dependent acoustic models. All the discussed methods come from frame-based discrim-
inative training that seeks such solution (such acoustic models) which yield on one hand
favorable quality (increased accuracy) of DT models, on the other hand these DT mod-
els should not be overly sensitive to imperfect function of a gender detector. A profit
of this solution can be observed in real-time recognition tasks (e.g. real-time subtitling
of meetings) when a reaction of the gender detector to the changes of speakers is not
immediate or the detector evaluates changes incorrectly. The goal is to minimize an
impact to the correct function of the recognizer. Let us mention that the Discriminative
Training (DT) or Frame-Discriminative training (FD) are described in Section 2.2 and
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incorporating DT to a gender-dependent training procedure is discussed in Section 4.4.
Obtained results are presented in Section 5.

2 Methods

2.1 Automatic clustering

Training of gender-dependent models is the most popular method how to split training
data into two more acoustically homogeneous classes [1]. But for particular corpora,
it should be verified that the gender-based clusters are the optimal way, i.e. the crite-
rion L =

∏
u P (u|M(u)), where u is an utterance in a corpus and M(u) is a relevant

acoustic model of its reference transcription, is maximal. Because of some male/female
”mishmash” voices contained in corpora we proposed an unsupervised clustering algo-
rithm which can reclassify training voices into more acoustically homogeneous classes.
The clustering procedure starts from gender-dependent splitting and finishes in some-
what refined distribution which yields higher accuracy score. [2].

The algorithm is based on similar criterion like the main training algorithm – max-
imize likelihood L of the training data with reference transcription and models. The
result of the algorithm is a set of trained acoustic models and a set of lists where all
utterances are assigned to exactly one cluster. Number of clusters (classes) n has to
be set in advance and for gender-dependent modeling naturally n = 2. The process
is a modification of the Expectation-Maximization (EM) algorithm. The unmodified
EM algorithm is applied for estimation of acoustic model parameters. The clustering
algorithm goes as follows:

1. Initial splitting of training utterances into n clusters. The clusters should have sim-
ilar size. In case of two initial classes it is reasonable to start the algorithm from
gender-based clusters/lists. In general case it should be a random splitting.

2. Train (retrain) acoustic models for all clusters.
3. Posterior probability density P (u|M) of each utterance u with its reference tran-

scription is computed for all models M (so-called forced-alignment).
4. Each utterance is assorted to the cluster with the maximal evaluation P (u|M) com-

puted in the previous step:

Mt+1(u) = arg max
M

P (u|M). (1)

5. If clusters changed then go back to step 2. Otherwise the algorithm is terminated.

Optimality of results of the clustering algorithm is not guaranteed. Besides, the algo-
rithm depends on initial clustering. Furthermore, even convergence of the algorithm is
not guaranteed, because there can be a few utterances which are reassigned all the time.
Therefore, it is suitable to apply a little threshold as a final stopping condition or to use
a fixed number of iterations. Thus, if we want to verify that the gender-dependent split-
ting is ”optimal” we use this initial male/female distribution and start the algorithm. The
intention is that the algorithm finishes with more refined clusters, in which ”masculine”
female and ”feminine” male voices and also errors in manual male/female annotations
will be reclassified which should ensure better performance of a recognizer.
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2.2 Discriminative training

Discriminative training (DT) was developed in a recent decade and provides better
recognition results than classical training based on Maximum Likelihood criterion (ML)
[3–6]. In principle, ML based training is a machine learning method from positive ex-
amples only. DT on the contrary uses both positive and negative examples in learn-
ing and can be based on various objective functions, e.g. Maximum Mutual Informa-
tion (MMI) [7], Minimum Classification Error (MCE) [5], Minimum Word/Phone Er-
ror (MWE/MPE) [3]. Most of them require generation of lattices or many-hypotheses
recognition run with appropriate language model. The lattices generation is highly time
consuming. Furthermore, these methods require good correspondence between training
and testing dictionary and language model. If the correspondence is weak, e.g. there
are many words which are only in the test dictionary then the results of these methods
are not good. In this case, we can employ Frame-Discriminative training (FD), which
is independent on a used dictionary and language model [8]. In addition, this approach
is much faster.

2.3 Frame-Discriminative training

In lattice based method with MMI objective function the training algorithm seeks to
maximize the posterior probability of the correct utterance given the used models [7]:

FMMI(λ) =
R∑
r=1

log
Pλ(Or|sr)κP (sr)κ∑
S Pλ(Or|s)κP (s)κ

, (2)

where λ represents the acoustic model parameters, Or is the training utterance feature
set, sr is the correct transcription for the r’th utterance, κ is the acoustic scale which
is used to amply confusions and herewith increases the test-set performance. P (s) is a
language model part.

Optimization of the MMI objective function uses Extended Baum-Welch update
equations and it requires two sets of statistics. The first set, corresponding to the nu-
merator (num) of the equation (2), is the correct transcription. The second one cor-
responds to the denominator (den) and it is a recognition/lattice model containing all
possible words. An accumulation of statistics is done by forward-backward algorithm
on reference transcriptions (numerator) as well as generated lattices (denominator). The
Gaussian means and variances are updated as follows [8]:

µ̂jm =
Θnumjm (O)−Θdenjm (O) +Djmµ

′
jm

γnumjm − γdenjm +Djm
(3)

σ̂2
jm =

Θnumjm (O2)−Θdenjm (O2) +Djm(σ′2jm + µ′2jm)
γnumjm − γdenjm +Djm

− µ2
jm, (4)

where j and m are the HMM-state and Gaussian index, respectively, γjm is the ac-
cumulated occupancy of the Gaussian, Θjm(O) and Θjm(O2) are a posteriori prob-
ability weighted by the first and the second order accumulated statistics, respectively.
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The Gaussian-specific stabilization constants Djm are set to maximum of (i) double
of the smallest value which ensures positive estimated variances, and (ii) value Eγdenjm ,
where constant E determines the stability/learning-rate and it is a compromise between
stability and number of iteration which is needed for well-trained models [9]. In Frame-
Discriminative case, the denominator lattices generation and its forward-backward pro-
cessing is not needed. The denominator posterior probability is calculated from a set of
all states in HMM. This very general denominator model leads to good generalization
to test data. Furthermore, statistics of only a few major Gaussians are need to be up-
dated and their probability has to be exactly calculated in each time. It can lead to very
time-efficient algorithm [10]. Optimization of the model parameters uses the same two
equations (3) and (4), the computation of Θdenjm (O) and γdenjm is modified only.

2.4 Frame-Discriminative adaptation

In case that only limited data are available, maximum a posteriori probability method
(MAP) [11] can be used even for discriminative training [12]. It works in the same man-
ner as the standard MAP, only the input HMM has to be discriminatively trained with
the same objective function. For discriminative adaptation it is strongly recommended
to use I-smoothing method to boost stability of new estimates [13].

3 Train data description

For training of acoustic models a microphone-based high-quality speech corpus was
used. The high-quality speech corpus of read-speech consists of the speech of 800
speakers (384 males and 416 females). Each speaker read 170 sentences. The database
of text prompts from which the sentences were selected was obtained in an electronic
form from the web pages of Czech newspaper publishers[14]. Special consideration
was given to the sentences selection, since they provide a representative distribution
of the more frequent triphone sequences (reflecting their relative occurrences in natu-
ral speech). The corpus was recorded in the office where only the speaker was present.
Sentences were recorded by a close-talking microphone (Sennheisser HMD410-6). The
recording sessions yielded totally about 220 hours of speech.

4 Experimental setup

4.1 Acoustic processing

The digitization of an analogue signal is provided at 22.05 kHz sample rate and 16-bit
resolution format. The aim of the front-end processor is to convert continuous speech
into a sequence of feature vectors. Several tests were performed in order to determine
the best parameterization settings of the acoustic data (see [15] for methodology). The
best results were achieved using PLP parameterization [16] with 27 filters and 12 PLP
cepstral coefficients with both delta and delta-delta sub-features (see [17] for details).
Therefore one feature vector contains 36 coefficients. Feature vectors are computed
each 10 milliseconds (100 frames per second).
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4.2 Acoustic model

The individual basic speech unit in all our experiments was represented by a three-state
HMM with a continuous output probability density function assigned to each state. As
the number of Czech triphones is too large, phonetic decision trees were used to tie
states of Czech triphones. Several experiments were performed to determine the best
recognition results according to the number of clustered states and also to the number of
mixtures. In all presented experiments, we used 16 mixtures of multivariate Gaussians
for each of 4922 states. The baseline acoustic model was made using HTK-Toolkit v.3.4
[18].

4.3 Two class splitting

As was presented above, the whole training corpus was split into two acoustically ho-
mogeneous classes (gender-based). Initial splitting was achieved via manual markers.
However, due to several ”masculine” female and ”feminine” male voices occurring in
the training corpora and also because of possible errors in manual annotations we ap-
plied algorithm introduced in Subsection 2.1 to refine initial ”gender-based” training
subcorpora. The whole set of sentences (109.5k) was split into male (52.4k) and female
(57.1k) parts based on manually assigned markers. The percentage of sentences which
were moved from the male to female (Mi−1 → Fi) cluster as well as from the female
to male (Fi−1 →Mi) cluster in two following iteration steps (i,i− 1) is given in Table
1.

Table 1. The shift between male and female clusters

Iteration [%]
step (i) Mi−1 → Mi Mi−1 → Fi Fi−1 → Fi Fi−1 → Mi

1 96.81 4.81 95.76 2.63
2 99.37 0.90 99.21 0.52
3 99.34 0.37 99.93 0.36
4 99.75 0.25 99.69 0.31
5 99.65 0.25 99.78 0.32
6 99.90 0.06 99.94 0.10
7 99.97 0.01 99.99 0.03

4.4 Discriminative training of two-class models

Our next attention was to explore a suitable way of discriminative training of gender-
dependent acoustic models which would yield on one hand favorable characteristics
of DT models but on the other hand developed models should not be overly sensitive
to imperfect function of a gender detector, e.g. a negative impact of reversely selected
(male/female) acoustic model. Such situation could happen for instance in real-time
recognition tasks in case that the reaction of a gender detector to the change of speaker
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is not immediate and/or the detector evaluates the change incorrectly. We performed a
set of experiments in which an impact of speaker independent and gender-dependent
acoustic models were tested in combination with a technique of frame-based discrim-
inative training. In case when only single acoustic model is trained, the situation is
simple. The model is trained from all data under ML approach or some DT objective
function. Nevertheless some parameters could be tuned, for example a number of tied-
states and a number of Gaussians per state. In DT case, the number of tuned parameters
is higher but it is still an optimization task. In our experiments corresponding models
are marked as SI (Speaker Independent) and SI DT for ML and DT, respectively.
The DT model was developed from SI via two training iterations based on FD-MMI
objective function. The E constant was set to one. Furthermore, the I-smoothing was
applied and smoothing constant τ I was set to 100. If the training data is split into more
than one class, the situation is a bit complicated because of more training strategies
that we have in our disposal. Naturally the same training procedure can be used for
each part of data. This is concluded by a set of independent models. For a real appli-
cation this approach is not a good option because final models have different topology
which is generated during tied-states clustering and therefore obtained models cannot
be simply switched/replaced in the recognizer. The better strategy is to split the training
procedure just after state clustering. In our experiments such model sets are marked
as ClusterGD and ClusterGD DT for ML and DT, respectively. Secondly, the ML
or DT adaptation can be applied. In our experiments the adaptation starts from SI or
SI DT and two iterations were done via MAP or DT-MAP with parameter τ equal
to 25. Two models developed by these techniques are marked as SI MLAdapt and
SI DTAdapt.

4.5 Tests description

The test set consists of 100 minutes of speech from 10 male and 10 female speakers (5
minutes from each) which were not included in training data. In all recognition exper-
iments a language model based on zerograms was applied in order to judge a quality
of developed acoustic models. In all experiments the perplexity of the task was 2190,
there were no OOV words.

5 Results

As can be seen from Table 2 we achieved a significant gain in terms of recognition re-
sults for all gender-dependent acoustic models (ClusterGD, ClusterGD DT ,
SI MLAdapt and SI DTAdapt) against speaker independent acoustic models (SI
and SI DT ). Moreover the automatic clustering procedure decreases the word error
rate more than 1.7% relatively, see the row GD with recognition results for man-
ually marked training data and ClusterGD with recognition results after the auto-
matic re-clustering procedure of training data was performed. This gain is more than
11% relatively for ClusterGD DT (discriminative re-training of gender dependent
ML model) when the information on speaker gender is correct. But on the other hand
the recognition results are considerably worse when the speaker gender information
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Table 2. The results of recognition experiments

WER [%]
SI 40.19
SI DT 39.02
Gender identification correct non correct
GD 37.50 64.08
ClusterGD 36.89 63.57
ClusterGD DT 35.81 61.92
SI MLAdapt 38.08 52.18
SI DTAdapt 36.99 46.60

is not correct. From this point of view the best tradeoff between recognition results
of gender-dependent acoustic model with correct and non-correct gender information is
SI DTAdapt (SI DTAdapt is SI DT after two iterations via DT-MAP). In this case
the recognition results are slightly worse (improvement 8% relatively to SI) than in case
of ClusterGD DT but the non-correct gender information decreases the recognition
results only slightly comparing with the original SI acoustic model.

6 Conclusion

The goal of our work was to build the gender-dependent acoustic model which is more
robust to the incorrect decisions of gender detector. We tried several methods based on
combination of gender-based data and discriminative training procedures. In all exper-
iments a zero-gram language model was applied in order to better judge the quality of
developed acoustic model. The best gender-dependent training procedure depends on
the performance of gender detection. If the gender detector works perfectly theGD DT
model is the best solution. But if the gender detector works incorrectly, e.g. a change of
speaker is not detected in time or is evaluated sometimes wrongly then SI DTAdapt
acoustic model seems to be a good trade off.
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